
File and Directory Permissions Explained
Looking back at the long listings provided by the ls command you see that the first bit of
information displayed is the permissions for the given file or directory.

$ ls -l sales.data
-rw-r--r-- 1 bob users 10400 Sep 27 08:52 sales.data

The first character in the permissions string reveals the type. For example, - is a regular file, d is
a directory, and l is a symbolic link. Those are the most common types you will encounter. For a
full listing read the ls man page.

Symbol Type
- Regular file
d Directory
l Symbolic link

You will also notice other characters in the permissions string. They represent the three main
types of permissions which are read, write, and execute. Each one is represented by a single
letter, also known as a symbol. Read is represented by r , write by w , and execute by x .

Symbol Permission
r Read
w Write
x Execute

Read, write, and execute are rather self explanatory. If you have read permissions you can see
the contents of the file. If you have write permissions you can modify the file. If you have execute
permissions you can run the file as a program. However, when these permissions are applied to
directories they have a slightly different meaning than when they are applied to files.

Permission File Meaning Directory Meaning
Read Allows a file to be read. Allows file names in the directory to be read.
Write Allows a file to be

modified.
Allows entries to be modified within the directory.

Execute Allows the execution of
a file.

Allows access to contents and metadata for entries in
the directory.

There are three categories of users that these permissions can be applied to. These categories
or classes are user, group, and other. Like the permission types, each set is represented by a
single letter. The user who owns the file is represented by u , the users that are in the file's group
are represented by g , and the other users who do not own the file or are not in the file's group are
represented by o . The character a represents all, meaning user, group, and other. Even though
these characters do not show up in an ls listing, they can be used to change permissions.

Symbol Category
u User
g Group

o Other
a All - user, group, and other.

Every user is a member of at least one group called their primary group. However, users can and
often are members of many groups. Groups are used to organize users into logical sets. For
example, if members of the sales team need access to some of the same files and directories
they can be placed into the sales group.

Run the groups command to see what groups you are a member of. If you supply another users
ID as an argument to the groups command you will see the list of groups to which that user
belongs. You can also run id -Gn [user] to get the same result.

$ groups
users sales
$ id -Gn
users sales
$ groups pat
users projectx apache
$ groups jill
users sales manager

Secret Decoder Ring for Permissions
Now you have enough background information to start decoding the permissions string. The first
character is the type. The next three characters represent the permissions available to the user,
also known as the owner of the file. The next three characters represent the permissions
available to the members of the file's group. The final three characters represent the permissions
available to all others.

In this case order has meaning. Permission types will be displayed for user, followed by group,
and finally for others. Also, the permission types of read, write, and execute are displayed in that
order. If a particular permission is not granted a hyphen (-) will take its place.

Here is a graphical representation of the permission information displayed by ls -l.

If you happen to see an extra character at the end of the permissions string an alternative access
control method has been applied. If you see a period (.), the file or directory has an SELinux
(Security Enhanced Linux) security context applied to it. If you see a plus sign (+), ACLs (Access
Control Lists) are in use. SELinux and ACLs are beyond the scope of this book. However, you
will be pleased to know that the use of either of these is rare. If you are having troubles with
permissions and notice an extra character in the permissions string, know that further
investigation may be necessary.

$ ls -l sales.data.selinux
-rw-r--r--. 1 bob users 10400 Sep 27 08:52 sales.data.selinux
$ ls -l sales.data.acl
-rw-r--r--+ 1 bob users 10400 Sep 27 08:52 sales.data.acl

Changing Permissions
Permissions are also known as modes. That is why the command you use to change
permissions is called chmod , short for "change mode." The format of the chmod command is chmod
mode file. There are two ways to specify the mode. The first way is called symbolic mode. The
symbolic mode format is chmod user_category operator permission. Here is a table view of the
chmod command symbolic mode format.

Item Meaning
chmod The change mode command
ugoa The user category. One or more of u for user, g for group, o for other, a for all.
+-= One of +, -, or =. Use + to add permissions, - to subtract them, or = to explicitly set

them.
rwx The permissions. One or more of r for read, w write, and x execute.

You can add, subtract, or set permissions using user category and permission pairs. For
example, if you want to add the write permission for the members of a file's group, you would
specify chmod g+w file.

$ ls -l sales.data
-rw-r--r-- 1 bob users 10400 Sep 27 08:52 sales.data
$ chmod g+w sales.data
$ ls -l sales.data
-rw-rw-r-- 1 bob users 10400 Sep 27 08:52 sales.data

Notice that after running chmod g+w sales.data the permissions string changed from '-rw-r--r--' to
'-rw-rw-r--'. Remember that the permissions are displayed in the order of user, group, and other.
The group permission set now includes the w symbol indicating that the write permission has
been granted. Now the owner of the file (bob) and members of the group (users) can read and
write to the sales.data file. Here is the reverse. This is how you would subtract the write
permission.

$ ls -l sales.data
-rw-rw-r-- 1 bob users 10400 Sep 27 08:52 sales.data
$ chmod g-w sales.data
$ ls -l sales.data
-rw-r--r-- 1 bob users 10400 Sep 27 08:52 sales.data

You can change more than one permission at a time. This time write and execute permissions
are added for the file's group.

$ ls -l sales.data
-rw-r--r-- 1 bob users 10400 Sep 27 08:52 sales.data
$ chmod g+wx sales.data
$ ls -l sales.data
-rw-rwxr-- 1 bob users 10400 Sep 27 08:52 sales.data

You can even set permissions on different user categories simultaneously. Here is how to
change permissions for the user and group. Notice that before running this command that the
user already has the write permissions. Using + to add permissions does not negate any existing
permissions, it just adds to them.

$ ls -l sales.data
-rw-r--r-- 1 bob users 10400 Sep 27 08:52 sales.data
$ chmod ug+wx sales.data

$ ls -l sales.data
-rwxrwxr-- 1 bob users 10400 Sep 27 08:52 sales.data

If you want to set different permissions for different user categories, you can separate the
specifications with a comma. You can mix and match to produce the outcome you desire. Here is
how you can specify rwx for user while adding x for group.

$ ls -l sales.data
-rw-r--r-- 1 bob users 10400 Sep 27 08:52 sales.data
$ chmod u=rwx,g+x sales.data
$ ls -l sales.data
-rwxr-xr-- 1 bob users 10400 Sep 27 08:52 sales.data

If you want to set the file to be just readable by everyone, run chmod a=r file . When you use the
equal sign (=) the permission are set to exactly what you specify. If you specify just read, then
only read will be available regardless of any existing permissions.

$ ls -l sales.data
-rw-r--r-- 1 bob users 10400 Sep 27 08:52 sales.data
$ chmod a=r sales.data
$ ls -l sales.data
-r--r--r-- 1 bob users 10400 Sep 27 08:52 sales.data

If you do not specify permissions following the equal sign, the permissions are removed. Here is
an illustration of this behaviour

$ ls -l sales.data
-rw-r--r-- 1 bob users 10400 Sep 27 08:52 sales.data
$ chmod u=rwx,g=rx,o= sales.data
$ ls -l sales.data
-rwxr-x--- 1 bob users 10400 Sep 27 08:52 sales.data

Numeric Based Permissions
In addition to symbolic mode, octal mode can be used with chmod to set file and directory
permissions. Understanding the concepts behind symbolic mode will help you learn octal mode.
However, once you learn octal mode you may find that it is even quicker and easier to use than
symbolic mode. Since there are only a few common and practical permission modes they can be
readily memorized and recalled.

In octal mode permissions are based in binary. Each permission type is treated as a bit that is
either set to off (0) or on (1). In permissions, order has meaning. Permissions are always in read,
write, and execute order. If r , w , and x are all set to off, the binary representation is 000 . If they
are all set to on, the binary representation is 111 . To represent read and execute permissions
while omitting write permissions, the binary number is 101 .

r w x
0 0 0 Binary value for off
1 1 1 Binary value for on

r w x
0 0 0 Base 10 (decimal) value for off
4 2 1 Base 10 (decimal) value for on

To get a number that can be used with chmod , convert the binary representation into base 10
(decimal). The shortcut here is to remember that read equals 4, write equals 2, and execute

(decimal). The shortcut here is to remember that read equals 4, write equals 2, and execute
equals 1. The permissions number is determined by adding up the values for each permission
type. There are eight possible values from zero to seven, hence the name octal mode. This table
demonstrates all eight of the possible permutations.

Octal Binary String Description
0 000 --- No permissions
1 001 --x Execute only
2 010 -w- Write only
3 011 -wx Write and execute (2 + 1)
4 100 r-- Read only
5 101 r-x Read and execute (4 + 1)
6 110 rw- Read and write (4 + 2)
7 111 rwx Read, write, and execute (4 + 2 + 1)

Again, in permissions order has meaning. The user categories are always in user, group, and
other order. Once you determine the octal value for each category you specify them in that order.
For example, to get -rwxr-xr--, run chmod 754 file. That means the user (owner) of the file has
read, write, and execute permission; the members of the file's group have read and execute
permission; and others have read permissions.

U G O

Symbolic rwx r-x r--

Binary 111 101 100

Decimal 7 5 4

Commonly Used Permissions
Here are the most commonly used permissions. These five permissions will let you do just about
anything you need to permissions wise.

Symbolic Octal Use Case / Meaning
-rwx----
--

700 Ensures a file can only be read, edited, and executed by the owner. No
others on the system have access.

-rwxr-
xr-x

755 Allows everyone on the system to execute the file but only the owner can
edit it.

-rw-rw-
r--

664 Allows a group of people to modify the file and let others read it.

-rw-rw--
--

660 Allows a group of people to modify the file and not let others read it.

-rw-r--
r--

644 Allows everyone on the system to read the file but only the owner can edit
it.

When you encounter 777 or 666 permissions, ask yourself "Is there a better way to do this?"
"Does everybody on the system need write access to this?" For example, if a script or program is
set to 777 , then anyone on the system can make changes to that script or program. Since the
execute bit is set for everyone, that program can then be executed by anyone on system. If
malicious code was inserted either on purpose or on accident it could cause unnecessary
trouble. If multiple people need write access to a file consider using groups and limiting the
access of others. It is good practice to avoid using 777 and 666 permission modes.

Working with Groups
If you work on the sales team and each member needs to update the sales.report file, you
would set the group to sales using the chgrp command and then set the permissions to 664 (rw-
rw-r--). You could even use 660 (rw-rw---) permissions if you want to make sure only members
of the sales team can read the report. Technically 774 (rwxrwxr--) or 770 (rwxrwx---)
permissions work also, but since sales.report is not an executable program it makes more
sense to use 664 (rw-rw-r--) or 660 (rw-rw----).

When you create a file its group is set to your primary group. This behaviour can be overridden
by using the newgrp command, but just keep in mind when you create a file it typically inherits
your default group. In the following example Bob's primary group is users . Note that the format of
the chgrp command is chgrp GROUP FILE.

$ nano sales.report
$ ls -l sales.report
-rw-r--r-- 1 bob users 6 Dec 4 20:41 sales.report
$ chgrp sales sales.report
$ ls -l sales.report
-rw-r--r-- 1 bob sales 6 Dec 4 20:41 sales.report
$ chmod 664 sales.report
$ ls -l sales.report
-rw-rw-r-- 1 bob sales 6 Dec 4 20:41 sales.report

Instead of keeping files in the home directories of various team members, it is easier to keep
them in a location dedicated to the team. For example, you could ask the system administrator of
the server to create a /usr/local/sales directory. The group should be set to sales and the
permissions should be set to 775 (rwxrwxr-x) or 770 (rwxrwx---). Use 770 (rwxrwx---) if no one
outside the sales team needs access to any files, directories, or programs located in
/usr/local/sales.

$ ls -ld /usr/local/sales
drwxrwxr-x 2 root sales 4096 Dec 4 20:53 /usr/local/sales
$ mv sales.report /usr/local/sales/
$ ls -l /usr/local/sales
total 4
-rw-rw-r-- 1 bob sales 6 Dec 4 20:41 sales.report

Directory Permissions Revisited
This example demonstrates how permissions effect directories and their contents. A common
problem is having proper permissions set on a file within a directory only to have the incorrect
permissions on the directory itself. Not having the correct permissions on a directory can prevent
the execution of the file, for example. If you are sure a file's permissions have been set correctly,
look at the parent directory. Work your way towards the root of the directory tree by running ls -
ld . in the current directory, moving up to the parent directory with cd .., and repeating those
two steps until you find the problem.

$ ls -dl directory/
drwxr-xr-x 2 bob users 4096 Sep 29 22:02 directory/
$ ls -l directory/
total 0
-rwxr--r-- 1 bob users 0 Sep 29 22:02 testprog
$ chmod 400 directory
$ ls -dl directory/
dr-------- 2 bob users 4096 Sep 29 22:02 directory/
$ ls -l directory/
ls: cannot access directory/testprog: Permission denied
total 0

-????????? ? ? ? ? ? testprog
$ directory/testprog
-su: directory/testprog: Permission denied
$ chmod 500 directory/
$ ls -dl directory/
dr-x------ 2 bob users 4096 Sep 29 22:02 directory/
$ ls -l directory/
total 0
-rwxr--r-- 1 bob users 0 Sep 29 22:02 testprog
$ directory/testprog
This program ran successfully.
$

Default Permissions and the File Creation Mask
The file creation mask is what determines the permissions a file will be assigned upon its
creation. The mask restricts or masks permissions, thus determining the ultimate permission a file
or directory will be given. If no mask were present directories would be created with 777
(rwxrwxrwx) permissions and files would be created with 666 (rw-rw-rw-) permissions. The mask
can and is typically set by the system administrator, but it can be overridden on a per account
basis by including a umask statement in your personal initialization files.

umask [-S] [mode] - Sets the file creation mask to mode if specified. If mode is omitted, the
current mode will be displayed. Using the -S argument allows umask to display or set the mode
with symbolic notation.

The mode supplied to umask works in the opposite way as the mode given to chmod . When you
supply 7 to chmod , that is interpreted to mean all permissions on or rwx . When you supply 7 to
umask , that is interpreted to mean all permissions off or --- . Think of chmod as turning on,
adding, or giving permissions. Think of umask as turning off, subtracting, or taking away
permissions.

A quick way to estimate what a umask mode will do to the default permissions is to subtract the
octal umask mode from 777 in the case of directories and 666 in the case of files. Here is an
example of a umask 022 which is typically the default umask used by Linux distributions or set by
system administrators.

 Dir File
Base Permission 777 666
Minus Umask -022 -022
 ---- ----
Creation Permission 755 644

Using a umask of 002 is ideal for working with members of your group. You will see that when
files or directories are created the permissions allow members of the group to manipulate those
files and directories.

 Dir File
Base Permission 777 666
Minus Umask -002 -002
 ---- ----
Creation Permission 775 664

Here is another possible umask to use for working with members of your group. Use 007 so that
no permissions are granted to users outside of the group.

 Dir File
Base Permission 777 666

Minus Umask -007 -007
 ---- ----
Creation Permission 770 660 *

Again, using this octal subtraction method is a good estimation. You can see that the method
breaks down with the umask mode of 007 . In reality, to get an accurate result each time you need
to convert the octal permissions into binary values. From there you use a bitwise NOT operation
on the umask mode and then perform a bitwise AND operation against that and the base
permissions.

It is fine to gloss over the subtleties here since there are only a few practical umask modes to
use. They are 022 , 002 , 077 , and 007 . Save yourself the binary math homework and look at the
following table containing all the resulting permissions created by each one of the eight mask
permutations.

Octal Binary Dir Perms File Perms
0 000 rwx rw-

1 001 rw- rw-

2 010 r-x r--

3 011 r-- r--

4 100 -wx -w-

5 101 -w- -w-

6 110 --x ---

7 111 --- ---

Special Modes
Look at this output of umask when the mask is set to 022 .

$ umask
0022

You will notice an extra leading 0 . So far you have only been dealing with three characters that
represent permissions for user, group, and other. There is a class of special modes. These
modes are setuid, setgid, and sticky. Know that these special modes are declared by prepending
a character to the octal mode that you normally use with umask or chmod . The important point
here is to know that umask 0022 is the same as umask 022 . Also, chmod 644 is the same as
chmod 0644 .

Even though special modes will not be covered in this book, here they are for your reference.
There are links at the end of this chapter so you can learn more about these modes if you are so
inclined.

setuid permission - Allows a process to run as the owner of the file, not the user executing it.

setgid permission - Allows a process to run with the group of the file, not of the group of the
user executing it.

sticky bit - Prevents a user from deleting another user's files even if they would normally have
permission to do so.

umask Examples
Here are two examples of the effects umask modes have on file and directory creation.

$ umask
0022
$ umask -S
u=rwx,g=rx,o=rx
$ mkdir a-dir
$ touch a-file
$ ls -l
total 4
drwxr-xr-x 2 bob users 4096 Dec 5 00:03 a-dir
-rw-r--r-- 1 bob users 0 Dec 5 00:03 a-file
$ rmdir a-dir
$ rm a-file
$ umask 007
$ umask
0007
$ umask -S
u=rwx,g=rwx,o=
$ mkdir a-dir
$ touch a-file
$ ls -l
total 4
drwxrwx--- 2 bob users 4096 Dec 5 00:04 a-dir
-rw-rw---- 1 bob users 0 Dec 5 00:04 a-file
$

Deep Dive
Binary Number System - There are only 10 kinds of people in the world: those who
understand binary and those who don't.
Every Possible Unix/Linux Umask Mode - An article that lists every possible umask mode.
Modes - Detailed permission information.
SELinux - The official SELinux project page.
Special File Permissions - An article describing setuid, setgid, and the sticky bit.
Ubuntu ACL Documentation - ACL documentation that applies not only to Ubuntu, but to
other Linux distributions as well.

http://www.LinuxTrainingAcademy.com

http://www.mathsisfun.com/binary-number-system.html
https://www.ibm.com/developerworks/community/blogs/brian/entry/every_possible_unix_linux_umask_mode_plus_scripts_to_generate_these_lists15?lang=en
https://en.wikipedia.org/wiki/Modes_(Unix)
http://selinuxproject.org/
http://docs.oracle.com/cd/E19683-01/806-4078/secfiles-69/index.html
https://help.ubuntu.com/community/FilePermissionsACLs
http://www.linuxtrainingacademy.com

	File and Directory Permissions Explained
	Secret Decoder Ring for Permissions
	Changing Permissions
	Numeric Based Permissions
	Commonly Used Permissions
	Working with Groups
	Directory Permissions Revisited
	Default Permissions and the File Creation Mask
	Special Modes
	umask Examples
	Deep Dive

