
Searching in Files
Searching for Text in ASCII Files
If you are looking for text within a file, use the grep command.

grep pattern file - Search for pattern in file.

grep -v pattern file - Invert match. Return lines from file that do not match pattern.

$ cat secret
site: facebook.com
user: bob
pass: Abee!
$ grep user secret
user: bob
$ grep o secret
site: facebook.com
user: bob
$ grep -v o secret
pass: Abee!

Here are some more common options to use with grep.

grep -i - Perform a search, ignoring case.

grep -c - Count the number of occurrences in a file.

grep -n - Precede output with line numbers from the file.

$ grep User secret
$ grep -i User secret
user: bob
$ grep -ci User secret
1
$ grep -ni User secret
2:user: bob

Searching For Text in Binary Files
If you run grep against a binary file, it will simply display whether or not that information was
found in the file, but it will not display the surrounding text. To look at textual data within a binary
file use the strings command.

strings file - Display printable strings in binary files.

$ grep -i john BlueTrain.mp3
Binary file BlueTrain.mp3 matches
$ strings BlueTrain.mp3 | grep -i john
John Coltrane
John Coltrane
$

Pipes
You will notice that two commands have been chained together with a vertical bar, also known
as the pipe symbol. The pipe (|) means take the standard output from the preceding command

and pass it as the standard input to the following command. If the first command displays error
messages those will not be passed to the second command. Those error messages are called
"standard error" output. You will learn how to manipulate standard error output in the
"Redirection" chapter.

Also notice that in the first occurrence of the grep command the format of grep -i pattern file
was used. In the second, the format of grep -i pattern was used. In the first format the input for
grep came from file . In the second format the input for grep came from the preceding command
via the pipe.

If you run strings BlueTrain.mp3 a lot of text will be displayed on the screen. Instead of letting
that text pass you by, you can feed it to grep -i john using a pipe. The result, as you can see, is
that 'John Coltrane' was found twice in the strings BlueTrain.mp3 output.

Pipes aren't limited to just two commands. You can keep chaining commands together until you
get the desired result you are looking for. Let's feed the output from grep to head -1 to limit the
output to just one line.

$ strings BlueTrain.mp3 | grep -i john | head -1
John Coltrane
$

Let's say you only want to display the second word of the above output. You can use the cut
command to accomplish that goal.

cut [file] - Cut out selected portions of file. If file is omitted, use standard input.

cut -d delimiter - Use delimiter as the field separator.

cut -f N - Display the Nth field.

To extract 'Coltrane' from 'John Coltrane', use a space as the delimiter (-d ' ') and print the
second field (-f 2). The space was quoted since spaces are typically ignored by the shell.
Single quotes or double quotes work the same in this situation.

$ strings BlueTrain.mp3 | grep -i john | head -1 | cut -d ' ' -f 2
Coltrane
$

You will find that there are many small commands that do just one thing well. Some examples
are awk , cat , cut , fmt , join , less , more , nl , pr , sed , seq , sort , tr , and uniq . Let's take an
example using some of those commands and chain them together with pipes.

The /etc/passwd file contains a list of accounts on the system and information about those
accounts. In this example, the goal is to find all of the users named "bob" listed in the
/etc/passwd file and print them in alphabetical order by username in a tabular format. Here is
one way you could do that.

$ grep bob /etc/passwd
bob:x:1000:1000:Bob:/home/bob:/bin/bash
bobdjr:x:1001:1000:Robert Downey:/home/bobdjr:/bin/bash
bobh:x:1002:1000:Bob Hope:/home/bobh:/bin/bash
bobs:x:1003:1000:Bob Saget:/home/bobs:/bin/bash
bobd:x:1004:1000:Bob Dylan:/home/bobd:/bin/bash
bobb:x:1005:1000:Bob Barker:/home/bobb:/bin/bash
$ grep bob /etc/passwd | cut -f1,5 -d:
bob:Bob
bobdjr:Robert Downey

bobh:Bob Hope
bobs:Bob Saget
bobd:Bob Dylan
bobb:Bob Barker
$ grep bob /etc/passwd | cut -f1,5 -d: | sort
bob:Bob
bobb:Bob Barker
bobd:Bob Dylan
bobdjr:Robert Downey
bobh:Bob Hope
bobs:Bob Saget
$ grep bob /etc/passwd | cut -f1,5 -d: | sort | sed 's/:/ /'
bob Bob
bobb Bob Barker
bobd Bob Dylan
bobdjr Robert Downey
bobh Bob Hope
bobs Bob Saget
$ grep bob /etc/passwd | cut -f1,5 -d: | sort | sed 's/:/ /' | column -t
bob Bob
bobb Bob Barker
bobd Bob Dylan
bobdjr Robert Downey
bobh Bob Hope
bobs Bob Saget

The above example shows the step-by-step thought process of how to go from one set of output
and pipe it as the input to the next command. If you need to perform this action often you could
save the final command for later use. As you can see, this simple concept of piping makes Linux
extremely powerful.

Pipe Output to a Pager

Another common use of pipes is to control how output is displayed to your screen. If a command
produces a significant amount of output it can scroll off your screen before you have the chance
to examine it. To control the output use a pager utility such as more or less . You've already used
those commands directly on files, but keep in mind they can take redirected input too.

$ grep bob /etc/passwd | less
bob:x:1000:1000:Bob:/home/bob:/bin/bash
bobdjr:x:1001:1000:Robert Downey:/home/bobdjr:/bin/bash
bobh:x:1002:1000:Bob Hope:/home/bobh:/bin/bash
bobb:x:1005:1000:Bob Barker:/home/bobb:/bin/bash
...
$ ls -l /usr/bin | less
total 62896
-rwxr-xr-x 1 root root 35264 Nov 19 2012 [
-rwxr-xr-x 1 root root 96 Sep 26 20:28 2to3-2.7
-rwxr-xr-x 1 root root 96 Sep 25 18:23 2to3-3.2
-rwxr-xr-x 1 root root 16224 Mar 18 2013 a2p
-rwxr-xr-x 1 root root 55336 Jul 12 2013 ab
....
$ ps -ef | more
UID PID PPID C STIME TTY TIME CMD
root 1 0 0 Jan08 ? 00:00:00 /sbin/init
root 2 0 0 Jan08 ? 00:00:00 [kthreadd]
root 3 2 0 Jan08 ? 00:00:01 [ksoftirqd/0]
root 6 2 0 Jan08 ? 00:00:00 [migration/0]
root 7 2 0 Jan08 ? 00:00:04 [watchdog/0]
...
$

http://www.LinuxTrainingAcademy.com

http://www.linuxtrainingacademy.com

	Searching in Files
	Searching for Text in ASCII Files
	Searching For Text in Binary Files
	Pipes
	Pipe Output to a Pager

