
Learn Linux in 5 Days

JASON CANNON

JASON CANNON

ii

Copyright © 2015 Jason Cannon

All rights reserved.

LEARN LINUX IN 5 DAYS

iii

Contents

Introduction 1

Day 1 3

Getting Access 4

Getting Connected 8

Welcome to Shell 33

Day 2 36

Linux Directory Structure 37

Basic Linux Commands 48

Teach Yourself to Fish 50

Working with Directories 54

Listing Files and Understanding ls Output 58

Day 3 67

File and Directory Permissions Explained 68

Finding Files 86

Viewing and Editing files 91

Comparing Files 106

Determining a File's Type 108

Searching in Files 109

Day 4 115

Deleting, Copying, Moving, and Renaming Files 116

Sorting Data 121

Creating a Collection of Files 123

JASON CANNON

iv

Compressing Files To Save Space 125

Compressing Archives 127

Redirection 129

Transferring and Copying Files 136

Welcome Back to Shell 142

Day 5 161

Processes and Job Control 162

Scheduling Repeated Jobs with Cron 169

Switching Users and Running Commands as Others 174

Installing Software 179

The End and the Beginning 189

About the Author 190

Other Books by the Author 191

Additional Resources Including Exclusive Discounts for You 192

Appendices 197

Appendix A: 198

Abbreviations and Acronyms 198

Appendix B: FAQ 202

Appendix C: Trademarks 205

LEARN LINUX IN 5 DAYS

v

OTHER BOOKS BY THE AUTHOR

Bash Command Line Pro Tips
http://www.linuxtrainingacademy.com/bash-pro-tips

Command Line Kung Fu: Bash Scripting Tricks, Linux Shell Programming
Tips, and Bash One-liners
http://www.linuxtrainingacademy.com/command-line-kung-fu-book

High Availability for the LAMP Stack: Eliminate Single Points of Failure
and Increase Uptime for Your Linux, Apache, MySQL, and PHP Based
Web Applications
http://www.linuxtrainingacademy.com/ha-lamp-book

Python Programming for Beginners
http://www.linuxtrainingacademy.com/python-programming-for-
beginners

http://www.linuxtrainingacademy.com/bash-pro-tips
http://www.linuxtrainingacademy.com/command-line-kung-fu-book
http://www.linuxtrainingacademy.com/ha-lamp-book
http://www.linuxtrainingacademy.com/python-programming-for-beginners
http://www.linuxtrainingacademy.com/python-programming-for-beginners

JASON CANNON

vi

YOUR FREE GIFT

As a thank you for reading Learn Linux in 5 Days, I would like to give you

a copy of Linux Alternatives to Windows Applications. In it, you will be

introduced to over 50 of the most popular applications available for

Linux today. These applications will allow you to browse the web,

watch movies, listen to music, connect to your favorite social networks,

create presentations, and more. This gift is a perfect complement to

this book and will help you along your Linux journey. Visit

http://www.linuxtrainingacademy.com/linux-apps to download your

free gift.

http://www.linuxtrainingacademy.com/linux-apps

1

INTRODUCTION

As the founder of the Linux Training Academy and an instructor of

several courses, I've had the good fortune of helping thousands of

people hone their Linux skills. Interacting with so many people who are

just getting started with the Linux operating system has given me

invaluable insight into the particular struggles and challenges people

face at this stage.

One of the biggest challenges for people interested in learning the ins

and outs of Linux is simply a lack of time. When you are working with a

limited and extremely valuable resource you want to make sure you

make the most of it.

The next biggest challenge for Linux newcomers is knowing where to

start. There is so much information available that deciding what to focus

your attention on first is a big enough hurdle to keep many people from

even starting. What's worse is starting down the path of learning only to

discover too many concepts, commands, and nuances that aren't

explained. This kind of experience is frustrating and leaves you with

more questions than answers.

That's why I've written this book.

JASON CANNON

2

Not only have I condensed the most important material into five

sections, each designed to be consumed in a day, I've also structured

the content in a logical and systematic manner. This way you'll be sure

to make the most out of your time by learning the foundational aspects

of Linux first and then building upon that foundation each day.

In Learn Linux in 5 Days you will learn the most important concepts and

commands, and be guided step-by-step through several practical and

real-world examples. As new concepts, commands, or jargon are

encountered they are explained in plain language, making it easy to

understand.

Let's get started.

LEARN LINUX IN 5 DAYS

3

DAY 1

JASON CANNON

4

GETTING ACCESS

In order to start learning your way around and putting your newfound

knowledge to the test, you're going to need access to a Linux system. If

you already have an account on a Linux system, you can skip ahead to

the next chapter.

Web Hosting Shell Accounts

If you use a web hosting service to host your website you may already

have a Linux account that you can use. Consult your hosting company's

documentation and search for "SSH" or "shell access." SSH stands for

Secure Shell and it provides a way to connect to a server over a

network, like the Internet. If you don't already have a web hosting

provider, you can sign up for one and use it for shell access. Shared web

hosting providers typically charge just a few dollars a month.

Here are some shared web hosting companies that can provide you with

a shell account and SSH access.

LEARN LINUX IN 5 DAYS

5

 1and1.com

 BlueHost.com

 DreamHost.com

 HostGator.com

 Site5.com

Using Preinstalled Linux Images

VirtualBox is virtualization software that can be installed on Windows,

Mac, Solaris, or Linux. It allows you to run an operating system (guest)

inside your current operating system (host). It's more time consuming

than the other options, but it can be worth the extra effort to have your

own personal Linux system. In this scenario you will spend a few

minutes installing the virtualzation software, downloading a pre-

installed Linux image, and importing that image.

To get started, head over to the VirtualBox download page located at

https://www.virtualbox.org/wiki/Downloads and grab the installer for

your current operating system. Click through the install screens and

accept the defaults.

Next, download a virtual disk image (VDI) from http://virtualboxes.org

to use. I recommend that you download a CentOS or Ubuntu image

unless you already know which Linux distribution you will be working

with in the future. Honestly, you can't make a wrong decision. The

concepts that you will be learning in this book apply to any Linux

distribution.

Launch VirtualBox, create a new virtual machine, and use the virtual

disk image that you just downloaded. When you are asked for a hard

disk image select the "Use existing hard disk" radio button and click on

the directory icon. Next, click "Add" and select the virtual disk image.

http://www.linuxtrainingacademy.com/1and1
http://www.linuxtrainingacademy.com/bluehost
http://www.linuxtrainingacademy.com/dreamhost
http://www.linuxtrainingacademy.com/hostgator
http://www.linuxtrainingacademy.com/site5

JASON CANNON

6

When the virtual machine is powered on you can log into the server

using the username and password provided with the downloaded

image.

LEARN LINUX IN 5 DAYS

7

Deep Dive

These links along with other supplemental material is available at:

http://www.linuxtrainingacademy.com/lfb

 How to Install VirtualBox on Mac - A video that guides you

through the installation of VirtualBox on Mac.

http://youtu.be/xBQdflx1L1o

 How to Install VirtualBox on Windows - A video that guides you

through the installation of VirtualBox on Windows.

http://youtu.be/CBhppdewtEQ

 VirtualBox Documentation - Official VirtualBox documentation

https://www.virtualbox.org/wiki/Documentation

 VirtualBox download page - Where to obtain a copy of

the VirtualBox software.

https://www.virtualbox.org/wiki/Downloads

 VirtualBoxes.org - A good source of virtual disk images.

http://virtualboxes.org/

http://www.linuxtrainingacademy.com/lfb
http://youtu.be/xBQdflx1L1o
http://youtu.be/CBhppdewtEQ
https://www.virtualbox.org/wiki/Documentation
https://www.virtualbox.org/wiki/Downloads
http://virtualboxes.org/

8

GETTING CONNECTED

When your account is created you will be provided with details on how

to connect to the Linux server. You may be provided with some or all of

the following information:

 Username. This is also known as an account, login, or ID.

 Password

 SSH key

 Server name or IP address

 Port number

 Connection protocol

The connection protocol will either be SSH (Secure Shell) or telnet. SSH

and telnet provide ways to connect to a server over the Internet or a

local area network. In the vast majority of cases the connection protocol

will be SSH. Telnet is practically obsolete at this point, however you may

run into it if you need to access a legacy system.

LEARN LINUX IN 5 DAYS

9

Choosing an SSH Client

If you were given a specific SSH client to use, use that program and

follow the documentation for that product. If you are free to choose

your own client or were not provided one, I suggest using PuTTY for

Windows or Terminal for Mac.

PuTTY can be downloaded from this website:

http://www.LinuxTrainingAcademy.com/putty/. You only need

putty.exe to get started.

The Terminal application comes pre-installed on Macs and is located in

the /Applications/Utilities folder.

A list of other SSH clients is provided in the Deep Dive section at the end

of this chapter.

http://www.linuxtrainingacademy.com/putty/

JASON CANNON

10

Connecting via SSH with a Password from

Windows

To connect to the Linux server using the SSH connection protocol,

launch PuTTY.

LEARN LINUX IN 5 DAYS

11

Type the host name or IP address you were given into the Host Name

(or IP address) box. If no port was given to you, leave it at the

default value of 22.

JASON CANNON

12

Enter your username by clicking on Data in the left pane. It is located

directly below Connection. Type your username into the Auto-

login username field. If you skip this step you will be prompted for

your username when you connect to the server.

LEARN LINUX IN 5 DAYS

13

Save your session by typing in a name in the Saved Sessions box

and clicking Save. This allows you to speed up this process by simply

double clicking on your saved session to connect to the Linux server.

JASON CANNON

14

When you click Open a connection attempt will be made. The first time

you connect to a particular server, PuTTY will ask to cache that server's

host key. You will not be prompted again on subsequent connections.

To add the server's SSH host key to PuTTY's cache, simply click Yes

when prompted.

LEARN LINUX IN 5 DAYS

15

Once you are successfully logged in, you will see something similar to

this:

Connecting via SSH with a Password from

Mac

The built-in SSH client on Mac is a command line program. Command

line programs can be run with the Terminal application that comes

with the Mac operating system. It is located in the

/Applications/Utilities folder. The format of the ssh

command is ssh -p port_number username@servername. If

you were not provided a port number, then the default port of 22 is

assumed and you can omit -p 22 from the ssh command. Similarly,

the username only needs to be specified if it is different on the server

than it is on your Mac workstation. For example, if your username on

your Mac is bob and your username on linuxsvr is also bob, you

can omit bob@ and simply type ssh linuxsvr. Once Terminal is

running, type in the ssh command. Commands are case-sensitive and

the ssh command is lowercase. It should look like one of these three

options:

JASON CANNON

16

ssh linuxsvr

ssh bob@linuxsvr

ssh -p 2222 bob@linuxsvr

The first time you connect to a particular server you will be asked to

verify that server's host key. You will not be prompted again on

subsequent connections. When you are asked Are you sure you

want to continue connecting (yes/no)? type yes and

press Enter. Once you have established a connection, you will be

prompted for your password.

Like Mac, Linux also comes with a terminal program and an SSH client.

Once you are connected to one Linux server you can use the ssh

command to connect to another Linux server. You can nest multiple

connections and navigate through your network of Linux servers in this

fashion.

LEARN LINUX IN 5 DAYS

17

General Information on Connecting via SSH

with Keys

You may have not be given a password, but rather given an SSH key or

even asked to generate one. In the physical world a key unlocks a door.

Similarly, an SSH key is used to unlock the access to your account on a

server. If you do not have a key, you cannot unlock the door.

Using account passwords or a combination of account passwords and

SSH keys is a common practice. With the growth of cloud computing in

recent years, it is becoming more and more popular to use SSH keys

exclusively. Since cloud servers are often connected to the public

internet, they are prone to brute force attacks. A mischievous person

could write a program that repeatedly connects to your server trying a

new username and password combination each time. They can increase

their odds of gaining entry by using a list of common usernames and

passwords. Configuring your cloud server to not accept account

passwords and to only accept SSH keys eliminates this threat.

You can further increase the security of your SSH key by giving it a

passphrase. In this case it takes something you have -- the key -- and

something you know -- the passphrase -- to gain access to your account.

If you feel confident that your key will only be under your control, you

can forgo providing a passphrase for your key. This will allow you to log

into servers without typing a password at all. Having an SSH key without

a passphrase can allow you to automate and schedule tasks that require

logging in to remote systems.

Importing SSH Keys on Windows

If you were given an SSH key that is not already in the PuTTY format,

you will need to convert it. PuTTYgen is required in order to convert an

SSH key on a Windows system.

JASON CANNON

18

Run PuTTYgen, click Load and navigate to the private SSH key you were

given. The names of the files are typically id_rsa or id_dsa for private

keys, and id_rsa.pub or id_dsa.pub for public keys.

Now you can save the public and private keys for later use with PuTTY.

LEARN LINUX IN 5 DAYS

19

Generating SSH Keys on Windows

In order to create an SSH key on a Windows system, you will need

PuTTYgen.

JASON CANNON

20

When you run PuTTYgen you will be asked to move the mouse around

to create some random data that will be used in the generation of the

key.

LEARN LINUX IN 5 DAYS

21

You have the option to use a passphrase for your key. You can also

change the comment to something more meaningful like Bob's key.

Now, save the public and private keys buy pressing Save public

key and then Save private key. Give the public key to the system

administrator so they can associate it with your account. The private key

is for your eyes only. Do not share your private key!

JASON CANNON

22

Next, export the key as an OpenSSH key by clicking on Conversions

and then Export OpenSSH Key. This OpenSSH key can later be

used on Unix or Linux systems.

Connecting via SSH from Windows

Follow the "Connecting via SSH with a Password from Windows"

instructions, but this time add one additional step to specify your SSH

private key file. You can do this by by clicking on the plug sign (+) next

to SSH in the left pane to reveal more options. Next click on Auth. In

the right pane select Browse under the Private key file for

authentication field and locate your private SSH key.

LEARN LINUX IN 5 DAYS

23

Generating SSH Keys on Mac

If you are asked to generate an SSH key, launch the Terminal application

and use the command line utility named ssh-keygen. You will be

asked a series of questions. Accept all the defaults by pressing Enter.

Optionally enter a passphrase for your SSH key.

mac:~ bob$ ssh-keygen

Generating public/private rsa key pair.

Enter file in which to save the key

(/Users/bob/.ssh/id_rsa):

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

JASON CANNON

24

Your identification has been saved in

/Users/bob/.ssh/id_rsa.

Your public key has been saved in

/Users/bob/.ssh/id_rsa.pub.

The key fingerprint is:

0b:14:c5:85:5f:55:77:35:5f:9e:15:a9:b4:b0:54:05

bob@mac

The key's randomart image is:

+--[RSA 2048]----+

| .o.o. .E+=@|

| .o o.. oO|

| + o.o|

| . .. o |

| . S |

| . . |

| . |

| |

| |

+-----------------+

Connecting via SSH with Keys from Mac

If you generated your keys, this part is already done for you. If you were

given an SSH key, you need to place it in a directory named .ssh

underneath your home directory. Open the Terminal application and

type in the following commands. Press the Enter key at the end of

each line.

mkdir ~/.ssh

chmod 700 ~/.ssh

You will gain a full understanding of what these commands do as you

progress through this book. In order to expedite the process of getting

connected, the details will be saved for later.

Switch to the Finder to copy your keys into the .ssh folder. In the

Finder menu click Go and then Go to Folder... and type ~/.ssh

when prompted. When you click go, the .ssh folder will be displayed.

LEARN LINUX IN 5 DAYS

25

Now you can drag your keys into place.

Back in the Terminal window, set the proper permissions on your key

files. (Again, these commands will be covered later.)

cd ~/.ssh

chmod 600 *

I highly recommend naming the keys in the following format: id_rsa and

id_rsa.pub or id_dsa and id_dsa.pub Otherwise, you will have to specify

the location of your key when you use the ssh command or perform

some additional configuration to tell SSH that your keys are not named

in the standard way.

As a general rule it makes your life much easier if you follow the

standard conventions and common practices. I will point them out along

the way. One of the things I love most about Linux is the freedom and

power it gives you to do things in a myriad of ways. There are cases

where not following the standard conventions will be the right thing to

do.

If you still wish to name your key something else, you can tell SSH where

to find it by adding -i key_location to the ssh command.

Remember, the format of the ssh command we used above is ssh -p

JASON CANNON

26

port_number username@servername. It can be expanded to

ssh -i key_location -p port_number

username@servername. Here's an example:

ssh -i /Users/bob/.ssh/bobs_key bob@linuxsvr

Connecting via Telnet

Telnet used to be the de facto way to connect to a Unix or Linux server.

Over the years telnet has been replaced with Secure Shell, abbreviated

SSH. SSH is, as its name implies, more secure than telnet. Telnet sends

your login credentials over the network in plain text. SSH encrypts the

communications between the client and the server, thus greatly

improving security. If someone were to be packet snooping or

eavesdropping on your connection, they would see garbled text and

random characters. If you do have a need to telnet to a system you can

use the SSH instructions from above, but with a couple of minor

changes.

Connecting via Telnet from Windows

Run PuTTY and select the Telnet radio button. If no port was given to

you, leave it at the default value of 23. You will be prompted for your

username and password when you connect to the server.

LEARN LINUX IN 5 DAYS

27

Connecting via Telnet from Mac

The built-in telnet client on Mac is a command line program. Command

line programs can be run with the Terminal application that comes

with the Mac operating system. It is located in the

/Applications/Utilities folder. The format of the telnet

command is telnet servername port_number. You only need

to include a port number if it is different than the default value of 23.

You will be prompted for your username and password when you

connect to the server.

JASON CANNON

28

mac:~ bob$ telnet linuxsvr

Trying 10.0.0.7...

Connected to 10.0.0.7.

Escape character is '^]'.

Ubuntu 12.04.3 LTS

linuxsvr login: bob

Password:

Last login: Thu Nov 7 01:26:37 UTC 2013

Welcome to Ubuntu 12.04.3 LTS

 * Documentation: https://help.ubuntu.com/

 System info as of Nov 7 01:26:52 UTC 2013

 System load: 0.42

 Usage of /: 3.1% of 40GB

 Memory usage: 32%

 Swap usage: 0%

 Processes: 89

 Users logged in: 0

 IP address for eth0: 10.0.0.7

bob@linuxsvr:~$

Connecting Directly

If you are running Linux in VirtualBox as described in the previous

chapter or you have dedicated hardware with Linux installed on it, you

can simply log in directly to the server. You will be presented with a

prompt requesting your username and password. If it is a graphical

environment, you will need to find a terminal application to use after

you have logged in. In most cases it will literally be "terminal", but you

might see some slight variations like "gnome terminal", "konsole", or

"xterm."

Here is what opening the terminal application looks like in CentOS. You

will find it in one of the menus.

LEARN LINUX IN 5 DAYS

29

JASON CANNON

30

In some Linux graphical environments there may not be a traditional

menuing system. In these cases you will want to search for the terminal

application. In this Ubuntu example, click the button in the top left of

the screen to bring up the dashboard. You can now start typing to find

applications that are installed on the system.

LEARN LINUX IN 5 DAYS

31

JASON CANNON

32

Deep Dive

 List of Mac SSH clients

http://www.openssh.org/macos.html

 List of SSH clients, all platforms

http://en.wikipedia.org/wiki/Comparison_of_SSH_clients

 List of Terminal Emulators - Includes terminals for

Windows, Mac, and Linux.

http://en.wikipedia.org/wiki/List_of_terminal_emulators

 List of Telnet Clients

https://en.wikipedia.org/wiki/Telnet#Telnet_clients

 List of Windows SSH clients

http://www.openssh.org/windows.html

 OpenSSH.org - The official website for OpenSSH.

 PuTTY

http://www.LinuxTrainingAcademy.com/putty/

 Watch Star Wars over a telnet connection.

 telnet towel.blinkenlights.nl

 To disconnect, hold down the Ctrl key and

press the right bracket (]). At the telnet >

prompt type quit and press Enter.

 Using SSH Public Key Authentication

http://macnugget.org/projects/publickeys

http://www.openssh.org/macos.html
https://en.wikipedia.org/wiki/Comparison_of_SSH_clients
http://en.wikipedia.org/wiki/Comparison_of_SSH_clients
http://en.wikipedia.org/wiki/List_of_terminal_emulators
https://en.wikipedia.org/wiki/Telnet#Telnet_clients
https://en.wikipedia.org/wiki/Telnet%23Telnet_clients
http://www.openssh.org/windows.html
http://www.linuxtrainingacademy.com/putty/
http://macnugget.org/projects/publickeys

33

WELCOME TO SHELL

When you log into a server over the network the shell program is

started and acts as your default interface to the system. The shell is

nothing more than a program that accepts your commands and

executes those commands. Said another way, the shell is a command

line interpreter.

Let's look at the shell prompt you'll be working with. The prompt just

sits and stares at you waiting for you do something interesting like give

it a command to execute. Here is Bob's shell prompt.

bob@linuxsvr $

Bob's prompt is in a common format of username@servername $.

In this example, the prompt is displaying the username, the server

name, and if that user is using the system as a normal user ($) or a

superuser (#).

The superuser on a Linux system is also called root. Anything that can be

done on a server can be done by root. However, normal users can only

do a subset of the things root can do. Root access is typically restricted

to system administrators, but if you happen to support an application

JASON CANNON

34

on a Linux server you may need root privileges to install, start, or stop it.

There are ways to grant specific users root privileges for specific cases.

This is often accomplished with the sudo -- SuperUser Do -- program.

That will be covered later. For now, just know that most of your day to

day activities will be performed using a normal user account.

Your prompt might not look like Bob's. Common items that appear in

prompts include the username, server name, present working directory,

and the current time. Here are a few more prompt examples.

[bob@linuxsvr /tmp]$

linuxsvr:/home/bob>

bob@linuxsvr:~>

[16:45:51 linuxsvr ~]$

$

%

>

In two of the prompt examples you will notice a tilde (~). The tilde is a

shorthand way of representing your home directory. In this example the

tilde (~) is equivalent to /home/bob, which is Bob's home directory.

This is called tilde expansion. A username can be specified after the tilde

and it will be expanded to the given user's home directory. For example,

~mail would expand to the home directory of the mail user which is

/var/spool/mail. Another example is ~pat expanding to

/home/pat.

Prompts do not have to be contained on a single line. They can span

multiple lines as in the following examples.

linuxsvr:[/home/bob]

$

(bob@linuxsvr)-(06:22pm-:-11/18)-]-

(~)

[Mon 13/11/18 18:22 EST][pts/0][x86_64]

<bob@linuxsvr:~>

LEARN LINUX IN 5 DAYS

35

zsh 14 %

█▓▒░linuxsvr░▒▓██▓▒░ Mon Nov 18 06:22pm

~/

For the remainder of this book the prompt will be shortened to the

dollar sign ($) unless displaying the full prompt provides additional

clarity. Also, the default prompt may vary from system to system, but

you can customize it to your liking. That, along with other shell related

topics, is covered in a later chapter.

Deep Dive

 Tilde Expasion

http://gnu.org/software/bash/manual/html_node/Tilde-

Expansion.html

http://gnu.org/software/bash/manual/html_node/Tilde-Expansion.html
http://gnu.org/software/bash/manual/html_node/Tilde-Expansion.html

36

DAY 2

LEARN LINUX IN 5 DAYS

37

LINUX DIRECTORY STRUCTURE

Now that you are able to connect to the server and have been

introduced to the interface you will be using, it's time to learn about the

directory layout. Understanding the directory structure will help you in

the future when you are searching for components on the system. It can

help you answer questions like:

Where are programs located?

Where do configuration files live?

Where might I find the log files for this application?

Common Directories

Here are the most common top level directories that you need to be

aware of and may interact with as a normal user.

JASON CANNON

38

Dir Description

/

The directory called "root." It is the starting point for the file

system hierarchy. Note that this is not related to the root, or

superuser, account.

/bin Binaries and other executable programs.

/etc System configuration files.

/home Home directories.

/opt Optional or third party software.

/tmp Temporary space, typically cleared on reboot.

/usr User related programs.

/var Variable data, most notably log files.

Comprehensive Directory Listing

Here is a comprehensive list of top level directories that you may find

on various Linux systems. Some subdirectories are included to help

clearly define the purpose of the top level directory. You may never

interact with many of these directories. Some of these directories will

be on every system you encounter like /usr. Other directories are

unique to specific Linux distributions. You can safely skim over this list

and refer back to it if or when you have a practical need to do so.

LEARN LINUX IN 5 DAYS

39

Dir Description

/

The directory called "root." It is the starting point for

the file system hierarchy. Note that this is not related

to the root, or superuser, account.

/bin Binaries and other executable programs.

/boot Files needed to boot the operating system.

/cdrom Mount point for CD-ROMs.

/cgroup Control Groups hierarchy.

/dev
Device files, typically controlled by the operating

system and the system administrators.

/etc System configuration files.

/export
Shared file systems. Most commonly found on Solaris

systems.

/home Home directories.

/lib System Libraries.

/lib64 System Libraries, 64 bit.

/lost+found
Used by the file system to store recovered files after a

file system check has been performed.

/media Used to mount removable media like CD-ROMs.

/mnt Used to mount external file systems.

/opt Optional or third party software.

JASON CANNON

40

Dir Description

/proc Provides information about running processes.

/root The home directory for the root account.

/sbin System administration binaries.

/selinux Used to display information about SELinux.

/srv Contains data which is served by the system.

/srv/www Web server files.

/srv/ftp FTP files.

/sys
Used to display and sometimes configure the devices

and busses known to the Linux kernel.

/tmp
Temporary space, typically cleared on reboot. This

directory can be used by the OS and users alike.

/usr

User related programs, libraries, and documentation.

The sub-directories in /usr relate to those described

above and below.

/usr/bin Binaries and other executable programs.

/usr/lib Libraries.

/usr/local
Locally installed software that is not part of the base

operating system.

/usr/sbin System administration binaries.

/var Variable data, most notably log files.

LEARN LINUX IN 5 DAYS

41

Dir Description

/var/log Log files.

Unix Specific Directories

Linux is often found in environments with other Unix variants. If you

ever have a need to log into a Unix server you may see some of the

following Unix specific directories.

Dir Description

/devices
Device files, typically controlled by the operating system

and the system administrators.

/kernel Kernel and kernel modules. (Solaris)

/platform Platform specific files. (Solaris)

/rpool ZFS root pool directory. (Solaris)

/net Used to mount external file systems. (HP-UX)

/nfs4
Used to mount the Federated File System domain root.

(Solaris)

/stand Files needed to boot HP-UX.

Note that you may encounter other top level directories that have not

been listed above. However, those were most likely created by the

system administrator.

Application Directory Structures

Applications can follow the same conventions employed by the

JASON CANNON

42

operating system. Here is a sample directory structure of an application

named apache installed in /usr/local.

Dir Description

/usr/local/apache/bin
The application's binaries and other

executable programs.

/usr/local/apache/etc
Configuration files for the

application.

/usr/local/apache/lib Application libraries.

/usr/local/apache/logs Application log files.

Here is what it might look like if it was installed in /opt.

Dir Description

/opt/apache/bin
The application's binaries and other

executable programs.

/opt/apache/etc
Configuration files for the

application.

/opt/apache/lib Application libraries.

/opt/apache/logs Application log files.

A common alternative to placing all the application subdirectories in

/opt/app-name is to also use /etc/opt/app-name and

/var/opt/app-name. Here is what that might look like for our

example apache application.

LEARN LINUX IN 5 DAYS

43

Dir Description

/etc/opt/apache Configuration files for the application.

/opt/apache/bin
The application's binaries and other executable

programs.

/opt/apache/lib Application libraries.

/var/opt/apache Application log files.

Sometimes applications that are not part of the standard operating

system are installed in a shared manner and are not given their own

subdirectory. For example, if apache was installed directly into

/usr/local its binaries would live in /usr/local/bin and its

configuration would live in /usr/local/etc. Apache may not be the

only locally installed software so it would share that space with the

other installed applications.

Another common practice is to create a directory structure based on a

company, organization, or team name. For example, if you work at the

Acme Corporation you may find a directory named /opt/acme or

/usr/local/acme. Sometimes scripts and utilities are installed

directly in that structure and other times there are segregated into their

own subdirectories. Here's an example.

Dir Description

/opt/acme Company top level directory.

/opt/acme/bin
Binary programs created by or installed by the

Acme Corporation.

JASON CANNON

44

Alternatively you may see something like this.

Dir Description

/opt/acme Company top level directory.

/opt/acme/apache
The top level directory for Acme's

installation of apache.

/opt/acme/apache/bin The apache binary programs.

Here are variations on the same idea, but based on a team within the

company.

Dir Description

/opt/web-team
The web support team's top level

directory.

/opt/acme/web-team
The web support team's top level

directory.

/usr/local/acme/web-team
The web support team's top level

directory.

Example Top Level Directory Listings

Here is a listing of the top level directories for a few different Linux

servers. Listing files and directories with the ls command will be

covered in the next chapter.

LEARN LINUX IN 5 DAYS

45

Red Hat Enterprise Linux 7 (RHEL)

[bob@rhel6 ~]$ ls -1 /

bin

boot

cgroup

dev

etc

home

lib

lib64

lost+found

media

mnt

opt

proc

root

sbin

selinux

srv

sys

tmp

usr

var

SUSE Linux Enterprise Server 11 (SLES)

[bob@sles11 ~]$ ls -1 /

bin

boot

dev

etc

home

lib

lib64

lost+found

media

mnt

opt

proc

root

JASON CANNON

46

sbin

selinux

srv

sys

tmp

usr

Ubuntu 14.04 LTS

[bob@ubuntu12 ~]$ ls -1 /

bin

boot

dev

etc

home

lib

lib64

lost+found

media

mnt

opt

proc

root

run

sbin

selinux

srv

sys

tmp

usr

var

LEARN LINUX IN 5 DAYS

47

Deep Dive

 Filesystem Hierarchy Standard

http://refspecs.linuxfoundation.org/FHS_2.3

 man hier

 RedHat Enterprise Linux

http://redhat.com/products/enterprise-linux/

 SUSE Linux Enterprise Server

https://www.suse.com/products/server/

 Ubuntu
http://www.ubuntu.com/

http://refspecs.linuxfoundation.org/FHS_2.3
http://redhat.com/products/enterprise-linux/
https://www.suse.com/products/server/
http://www.ubuntu.com/

48

BASIC LINUX COMMANDS

Here is a short list of basic, but essential commands. In Linux,

commands are case-sensitive and more often than not they are entirely

in lowercase. Items that are surrounded by brackets ([]) are optional.

You will more than likely use at least some of these commands every

time you log into a Linux system. Become familiar with these commands

because they can get you pretty far in a short amount of time.

ls - Lists directory contents. You will use ls to display information

about files and directories.

cd [dir] - Changes the current directory to dir. If you execute cd

without specifying a directory, cd changes the current directory to your

home directory. This is how you navigate around the system.

pwd - Displays the present working directory name. If you don't know

what directory you are in, pwd will tell you.

cat [file] - Concatenates and displays files. This is the command

you run to view the contents of a file.

echo [argument] - Displays arguments to the screen.

LEARN LINUX IN 5 DAYS

49

man command - Displays the online manual for command. Type q to

quit viewing the manual page. The documentation provided by the man

command is commonly called "man pages."

exit, logout, or Ctrl-d - Exits the shell or your current session.

clear - Clears the screen.

Here is a screen capture of Bob's session using the above commands.

$ ls

PerformanceReviews sales-lecture.mp3 sales.data

tpsreports

$ cd tpsreports

$ pwd

/home/bob/tpsreports

$ ls -l

total 2

-rw-r--r-- 1 bob users 31 Sep 28 14:49 coversheet.doc

-rw-r--r-- 1 bob users 35 Sep 27 08:47 sales-report

$ cat sales-report

We sold lots of widgets this week!

$ echo $PATH

/bin:/usr/bin:/usr/sbin:/usr/local/bin

$ man ls

NAME

 ls - list directory contents

...

More details on how you can fully exploit the power of these simple

commands will be covered later. But right now, grab your fishing pole --

you're about to learn how to fish.

50

TEACH YOURSELF TO FISH

Knowing where executable commands live and the man command can

take you a long way. You can teach yourself how to use Linux with this

method, but it would be a long, slow process. More often than not, the

man command will be used as a quick reference. It would be nearly

impossible to memorize every option for every command and there is

no need to do so when you have the man command at your fingertips.

To get help for the man command type the letter h while viewing a

manual page. That will give you a list of commands you can use to

navigate or search. Here is the concise version.

Enter - Move down one line.

Space - Move down one page.

g - Move to the top of the page.

G - Move to the bottom of the page.

q - Quit.

An environment variable is a storage location that has a name and a

LEARN LINUX IN 5 DAYS

51

value. The one we are interested in at the moment is PATH. The PATH

environment variable contains a list of directories that contain

executable commands. You can determine the value of PATH by

prepending it with a dollar sign ($PATH) and using the echo command

to display its value to the screen.

$ echo $PATH

/bin:/usr/bin:/usr/sbin:/usr/local/bin

When you type in a command at the prompt and press Enter, that

command will be searched for in the directories in your $PATH. In this

example, /bin will be searched first. If the command is found it will be

executed. If it is not found, then /usr/bin will be searched and so on.

If no executable command is found that matches your request, you will

be politely told that it cannot be found.

$ whatsupdoc

-bash: whatsupdoc: command not found

If you want to know exactly where a command is located you can use

the which command. If the program cat is located in /usr/bin and

in /usr/local/bin, the one which will get executed depends on

your $PATH.

$ which cat

/bin/cat

$ which tac

/usr/bin/tac

Putting this all together, you can start looking at what is in each

directory in your $PATH and use the man command to discover what

each one of them does and how to use them. Remember, to exit the

man command type the letter q.

$ echo $PATH

/bin:/usr/bin:/usr/sbin:/usr/local/bin

$ cd /bin

$ ls

awk diff cal cat cp date du echo grep groups less

JASON CANNON

52

more

$ man diff

NAME

 diff - compare two files

...

$ cd /usr/bin

$ ls

clear crontab cut dos2unix find kill mv pstree pwd

sed strings touch ...

$ man touch

Note that the output of the above ls commands was truncated. In

reality there can be hundreds of commands in /bin and /usr/bin.

Many commands will provide hints for how to use them at the

command line. Some commands will accept the -h flag, others will

accept --help, and some will refuse to give you any help at all.

$ cal -h

Usage:

 cal [options] [[[day] month] year]

Options:

 -1, --one show only current month (default)

 -3, --three show previous, current and next month

 -s, --sunday Sunday as first day of week

 -m, --monday Monday as first day of week

 -j, --julian output Julian dates

 -y, --year show whole current year

 -V, --version display version information and exit

 -h, --help display this help text and exit

$ diff --help

Usage: diff [OPTION]... FILES

Compare files line by line.

 -i --ignore-case Ignore case differences in file

contents.

 --ignore-file-name-case Ignore case when comparing

file names.

LEARN LINUX IN 5 DAYS

53

...

If you are not sure what command to use, you can search through the

man pages with man -k KEYWORD. From there you can read the man

page for the command or ask it for help with -h or --help.

$ man -k calendar

cal (1) - display a calendar

zshcalsys (1) - zsh calendar system

Deep Dive

 ExplainShell - Type in a command-line to display help for each

item.

http://explainshell.com/

 Getting Help From Linux - An article from the Linux Journal on

using man pages.

http://www.linuxjournal.com/node/1022962

 LinuxManPages.com - This website allows you to search man

pages or browse a category of commands and man pages.

http://www.linuxmanpages.com/

 Linux commands broken down by category.

http://linux.math.tifr.res.in/manuals/categories-index.html

http://explainshell.com/
http://www.linuxjournal.com/node/1022962
http://www.linuxmanpages.com/
http://linux.math.tifr.res.in/manuals/categories-index.html

54

WORKING WITH DIRECTORIES

Directories are simply containers for files and other directories. They

provide a tree like structure for organizing the system. Directories can

be accessed by their name and they can also be accessed using a couple

of shortcuts. Linux uses the symbols . and .. to represent directories.

Think of . as "this directory" and .. and "the parent directory."

Symbol Description

. This directory.

.. The parent directory.

/
Directory separator. Directories end in a forward slash and

this is often assumed.

The directory separator is optional for the last subdirectory in a path or

command. For example, the following commands work identically.

$ cd /var/tmp

$ cd /var/tmp/

LEARN LINUX IN 5 DAYS

55

Using the shortcuts can make navigating easier. For example, type

cd.. to go to the directory just above your current directory.

$ pwd

/home/bob

$ cd tpsreports

$ pwd

/home/bob/tpsreports

$ cd ..

$ pwd

/home/bob

$ cd ..

$ pwd

/home

$ cd .

$ pwd

/home

The cd . command did not take you anywhere. Remember that . is

"this directory" and .. is "the parent directory." Another shortcut for

navigating directories is cd -. This command takes you to the previous

directory. The environment variable that represents your previous

working directory is OLDPWD. So, cd - and cd $OLDPWD are

equivalent.

$ pwd

/home/bob

$ cd /var/tmp

$ pwd

/var/tmp

$ echo $OLDPWD

/home/bob

$ cd -

/home/bob

$

How would you execute a command that is in your current directory?

Assume your current directory is your home directory. By default your

home directory is not in your $PATH. Here is how to do that.

JASON CANNON

56

$./program

Why does that work? Well, . represents "this directory", / is the

directory separator, and program is the program to execute. You can

always use the full path to be explicit. Here are two ways to execute

program.

$ pwd

/home/bob

$./program

$ /home/bob/program

Creating and Removing Directories

The mkdir command is used to create directories and the rmdir

command removes them.

mkdir [-p] directory - Create a directory. Use the -p (parents)

option to create intermediate directories.

rmdir [-p] directory - Remove a directory. Use the -p

(parents) option to remove all the specified directories. rmdir only

removes empty directories. To remove directories and their contents,

use rm.

rm -rf directory - Recursively removes the directory and all files

and directories in that directory structure. Use with caution. There is no

"trash" container to quickly restore your file from when using the

command line. When you delete something, it is gone.

LEARN LINUX IN 5 DAYS

57

$ mkdir newdir

$ mkdir newdir/product/reviews

mkdir: Failed to make directory

"newdir/product/reviews"; No such file or directory

$ mkdir -p newdir/product/reviews

$ rmdir newdir

rmdir: directory "newdir": Directory not empty

$ rm -rf newdir

$ ls newdir

ls: newdir: No such file or directory

$ pwd

/home/bob

$ cd ..

$ pwd

/home

JASON CANNON

58

LISTING FILES AND UNDERSTANDING LS OUTPUT

Here is the output from an ls command using the -l option. The -l

flag tells ls to display output in a long format. If you need to see what

files or directories exist, use ls. However, if you need detailed

information use ls -l.

$ ls -l

-rw-rw-r-- 1 bob users 10400 Sep 27 08:52 sales.data

On the far left of the ls output is a series of characters that represent

the file permissions. The number that follows the permissions

represents the number of links to the file. The next bit of information is

the owner of the file followed by the group name. Next the file size is

displayed followed by the date and time when the file was last

modified. Finally, the name of the file or directory is displayed. Here is

the information displayed by the ls -l command in table form.

Item Value

Permissions -rw-rw-r--

Number of links 1

LEARN LINUX IN 5 DAYS

59

Item Value

Owner name bob

Group name users

Number of bytes in the file 10400

Last modification time Sep 27 08:52

File name sales.data

The meaning of -rw-rw-r-- will be covered in detailed in the "File

and Directory Permissions Explained" chapter.

Listing All Files, Including Hidden Files

Files or directories that begin with a period (.) are considered hidden

and are not displayed by default. To show these hidden files and

directories, use the -a option.

$ ls -a

.

..

.profile

.bash_history

lecture.mp3

PerfReviews

sales.data

tpsreports

Up until this point when you have used options, you have preceded

each option with a hyphen (-). Examples are -l and -a. Options that

do not take arguments can be combined. Only one hyphen is required

followed by the options. If you want to show a long ls listing with

hidden files you could run ls -l -a or ls -la. You can even

change the order of the flags, so ls -al works too. They are all

JASON CANNON

60

equivalent.

$ ls -l

total 2525

-rw-r--r-- 1 bob sales 25628 Sep 27 08:54 lecture.mp3

drwxr-xr-x 3 bob users 512 Sep 28 09:20 PerfReviews

-rw-r--r-- 1 bob users 10400 Sep 27 08:52 sales.data

drwxr-xr-x 2 bob users 512 Sep 28 14:49 tpsreports

$ ls -l -a

total 2532

drwxr-xr-x 4 bob sales 512 Sep 28 14:56 .

drwxr-xr-x 14 root root 512 Sep 27 08:43 ..

-rw-r--r-- 1 bob users 28 Sep 28 14:22 .profile

-rw------- 1 bob users 3314 Sep 28 14:56 .bash_history

-rw-r--r-- 1 bob sales 25628 Sep 27 08:54 lecture.mp3

drwxr-xr-x 3 bob users 512 Sep 28 09:20 PerfReviews

-rw-r--r-- 1 bob users 10400 Sep 27 08:52 sales.data

drwxr-xr-x 2 bob users 512 Sep 28 14:49 tpsreports

$ ls -la

total 2532

drwxr-xr-x 4 bob sales 512 Sep 28 14:56 .

drwxr-xr-x 14 root root 512 Sep 27 08:43 ..

-rw-r--r-- 1 bob users 28 Sep 28 14:22 .profile

-rw------- 1 bob users 3314 Sep 28 14:56

.bash_history

-rw-r--r-- 1 bob sales 25628 Sep 27 08:54 lecture.mp3

drwxr-xr-x 3 bob users 512 Sep 28 09:20 PerfReviews

-rw-r--r-- 1 bob users 10400 Sep 27 08:52 sales.data

drwxr-xr-x 2 bob users 512 Sep 28 14:49 tpsreports

$ ls -al

total 2532

drwxr-xr-x 4 bob sales 512 Sep 28 14:56 .

drwxr-xr-x 14 root root 512 Sep 27 08:43 ..

-rw-r--r-- 1 bob users 28 Sep 28 14:22 .profile

-rw------- 1 bob users 3314 Sep 28 14:56 .bash_history

-rw-r--r-- 1 bob sales 25628 Sep 27 08:54 lecture.mp3

drwxr-xr-x 3 bob users 512 Sep 28 09:20 PerfReviews

-rw-r--r-- 1 bob users 10400 Sep 27 08:52 sales.data

drwxr-xr-x 2 bob users 512 Sep 28 14:49 tpsreports

Listing Files by Type

When you use the -F option for ls a character is appended to the file

name that reveals what type it is.

LEARN LINUX IN 5 DAYS

61

$ ls

dir1 link program regFile

$ ls -F

dir1/ link@ program* regFile

$ ls -lF

total 8

drwxr-xr-x 2 bob users 117 Sep 28 15:31 dir1/

lrwxrwxrwx 1 bob users 7 Sep 28 15:32 link@ -> regFile

-rwxr-xr-x 1 bob users 10 Sep 28 15:31 program*

-rw-r--r-- 1 bob users 750 Sep 28 15:32 regFile

Symbol Meaning

/ Directory.

@
Link. The file that follows the -> symbol is the target of the

link.

* Executable program.

A link is sometimes called a symlink, short for symbolic link. A link points

to the location of the actual file or directory. You can operate on the link

as if it were the actual file or directory. Symbolic links can be used to

create shortcuts to long directory names. Another common use is to

have a symlink point to the latest version of installed software as in this

example.

bob@linuxsvr:~$ cd /opt/apache

bob@linuxsvr:/opt/apache ~$ ls -F

2.3/ 2.4/ current@

bob@linuxsvr:/opt/apache$ ls -l

drwxr-xr-x 2 root root 4096 Sep 14 12:21 2.3

drwxr-xr-x 2 root root 4096 Nov 27 15:43 2.4

lrwxrwxrwx 1 root root 5 Nov 27 15:43 current -> 2.4

Listing Files by Time and in Reverse Order

If you would like to sort the ls listing by time, use the -t option.

JASON CANNON

62

$ ls -t

tpsreports

PerfReviews

lecture.mp3

sales.data

$ ls -lt

total 2532

drwxr-xr-x 2 bob users 512 Sep 28 14:49 tpsreports

drwxr-xr-x 3 bob users 512 Sep 28 09:20 PerfReviews

-rw-r--r-- 1 bob sales 2562856 Sep 27 08:54 lecture.mp3

-rw-r--r-- 1 bob users 10400 Sep 27 08:52 sales.data

When you have a directory that contains many files it can be convenient

to sort them by time, but in reverse order. This will put the latest

modified files at the end of the ls output. The old files will scroll off the

top of your display, but the most recent files will be right above your

prompt.

$ ls -latr

total 2532

drwxr-xr-x 14 root root 512 Sep 27 08:43 ..

-rw-r--r-- 1 bob users 10400 Sep 27 08:52 sales.data

-rw-r--r-- 1 bob sales 256285 Sep 27 08:54 lecture.mp3

drwxr-xr-x 3 bob users 512 Sep 28 09:20 PerfReviews

-rw-r--r-- 1 bob users 28 Sep 28 14:22 .profile

drwxr-xr-x 2 bob users 512 Sep 28 14:49 tpsreports

drwxr-xr-x 4 bob sales 512 Sep 28 14:56 .

-rw------- 1 bob users 3340 Sep 28 15:04 .bash_history

Listing Files Recursively

Using the -R option with ls causes files and directories to be displayed

recursively.

LEARN LINUX IN 5 DAYS

63

$ ls -R

.:

PerfReviews lecture.mp3 sales.data tpsreports

./PerfReviews:

Fred John old

./PerfReviews/old:

Jane.doc

$

You can also use the tree command for more visually appealing

output. If you only want to see the directory structure, use tree -d.

tree - List contents of directories in a tree-like format.

tree -d - List directories only.

tree -C - Colorize output.

$ tree

.

├── PerfReviews

│ ├── Fred

│ ├── John

│ └── old

│ └── Jane.doc

├── sales.data

├── sales-lecture.mp3

└── tpsreports

2 directories, 6 files

$ tree -d

.

└── PerfReviews

 └── old

2 directories

$

JASON CANNON

64

List Directories, Not Contents

Normally when you run ls against a directory the contents of that

directory are displayed. If you want to ensure you only get the directory

name, use the -d option.

$ ls -l PerfReviews

total 3

-rw-r--r-- 1 bob users 36 Sep 27 08:49 Fred

-rw-r--r-- 1 bob users 36 Sep 28 09:21 John

drwxr-xr-x 2 bob users 512 Sep 27 12:40 old

$ ls -ld PerfReviews

drwxr-xr-x 3 bob users 512 Sep 28 09:20 PerfReviews

$ ls -d PerfReviews

PerfReviews

Listing Files with Color

Earlier you used ls -F to help differentiate file types by adding a

character to the end of their names in the ls output. You can also use

color to distinguish file types by using ls --color.

LEARN LINUX IN 5 DAYS

65

Commonly Used ls Options

Here is a recap of the ls options you have learned.

Option Description

-a All files, including hidden files

--color List files with colorized output

-d List directory names and not their contents

-l Long format

-r Reverse order

-R List files recursively

-t Sort by time, most recently modified first

Working with Spaces in Names

If you want to make your life easier when working from the command

line, do not use spaces in file and directory names. Hyphens (-) or

underscores (_) can be good substitutes for spaces. CamelCase, the

practice of capitalizing each word, is another good option. For example,

instead of naming your latest literary attempt "the next great american

novel.txt" you could use "the-next-great-american-novel.txt",

"the_next_great_american_novel.txt" or even

"TheNextGreatAmericanNovel.txt."

Sooner or later you will encounter a file or directory that contains a

space in the name. There are two ways to deal with this. The first is to

use quotation marks. Even though the file name is a file, operate on

it using "a file." The second option is to escape the space. Escaping

JASON CANNON

66

is like using quotes, but for single characters. The escape symbol is \,

also known as a backslash. To escape a space, precede the space with

the backslash (\) character.

$ ls -l

-rw-r--r-- 1 bob users 18 Oct 2 05:03 a file

$ ls -l a file

ls: a: No such file or directory

ls: file: No such file or directory

$ ls -l "a file"

-rw-r--r-- 1 bob users 18 Oct 2 05:03 a file

$ ls -l a\ file

-rw-r--r-- 1 bob users 18 Oct 2 05:03 a file

$ ls -lb a*

-rw-r--r-- 1 bob users 18 Oct 2 05:03 a\ file

$

The -b option to ls causes it to print escape codes. Note that quoting

and escaping not only applies to spaces, but with other special

characters as well including | & ' ; () < > space tab.

Deep Dive

 Escaping Special Characters in Linux and Unix: With 7 Practical

Examples - An article that takes a in-depth look at escaping.

http://linuxg.net/escaping-special-characters-in-linux-and-unix-

with-7-practical-examples/

 man bash - Look at the "QUOTING" section for handling

special characters including spaces.

 man ls - To learn about all of the available options to ls refer

to the man page.

http://linuxg.net/escaping-special-characters-in-linux-and-unix-with-7-practical-examples/
http://linuxg.net/escaping-special-characters-in-linux-and-unix-with-7-practical-examples/

LEARN LINUX IN 5 DAYS

67

DAY 3

JASON CANNON

68

FILE AND DIRECTORY PERMISSIONS EXPLAINED

Looking back at the long listings provided by the ls command you see

that the first bit of information displayed is the permissions for the

given file or directory.

$ ls -l sales.data

-rw-r--r-- 1 bob users 10400 Sep 27 08:52 sales.data

The first character in the permissions string reveals the type. For

example, - is a regular file, d is a directory, and l is a symbolic link.

Those are the most common types you will encounter. For a full listing

read the ls man page.

Symbol Type

- Regular file

d Directory

l Symbolic link

LEARN LINUX IN 5 DAYS

69

You will also notice other characters in the permissions string. They

represent the three main types of permissions which are read, write,

and execute. Each one is represented by a single letter, also known as a

symbol. Read is represented by r, write by w, and execute by x.

Symbol Permission

r Read

w Write

x Execute

Read, write, and execute are rather self explanatory. If you have read

permissions you can see the contents of the file. If you have write

permissions you can modify the file. If you have execute permissions

you can run the file as a program. However, when these permissions are

applied to directories they have a slightly different meaning than when

they are applied to files.

Permission File Meaning Directory Meaning

Read
Allows a file to be

read.

Allows file names in the directory

to be read.

Write
Allows a file to be

modified.

Allows entries to be modified

within the directory.

Execute
Allows the

execution of a file.

Allows access to contents and

metadata for entries in the

directory.

There are three categories of users that these permissions can be

applied to. These categories or classes are user, group, and other. Like

the permission types, each set is represented by a single letter. The user

who owns the file is represented by u, the users that are in the file's

JASON CANNON

70

group are represented by g, and the other users who do not own the

file or are not in the file's group are represented by o. The character a

represents all, meaning user, group, and other. Even though these

characters do not show up in an ls listing, they can be used to change

permissions.

Symbol Category

u User

g Group

o Other

a All - user, group, and other.

Every user is a member of at least one group called their primary group.

However, users can and often are members of many groups. Groups are

used to organize users into logical sets. For example, if members of the

sales team need access to some of the same files and directories they

can be placed into the sales group.

Run the groups command to see what groups you are a member of. If

you supply another users ID as an argument to the groups command

you will see the list of groups to which that user belongs. You can also

run id -Gn [user] to get the same result.

$ groups

users sales

$ id -Gn

users sales

$ groups pat

users projectx apache

$ groups jill

users sales manager

LEARN LINUX IN 5 DAYS

71

Secret Decoder Ring for Permissions

Now you have enough background information to start decoding the

permissions string. The first character is the type. The next three

characters represent the permissions available to the user, also known

as the owner of the file. The next three characters represent the

permissions available to the members of the file's group. The final three

characters represent the permissions available to all others.

In this case order has meaning. Permission types will be displayed for

user, followed by group, and finally for others. Also, the permission

types of read, write, and execute are displayed in that order. If a

particular permission is not granted a hyphen (-) will take its place.

Here is a graphical representation of the permission information

displayed by ls -l.

If you happen to see an extra character at the end of the permissions

string an alternative access control method has been applied. If you see

a period (.), the file or directory has an SELinux (Security Enhanced

Linux) security context applied to it. If you see a plus sign (+), ACLs

(Access Control Lists) are in use. SELinux and ACLs are beyond the scope

of this book. However, you will be pleased to know that the use of

either of these is rare. If you are having troubles with permissions and

notice an extra character in the permissions string, know that further

investigation may be necessary.

$ ls -l sales.data.selnx

-rw-r--r--. 1 bob users 1040 Sep 27 08:52 sales.data.selnx

$ ls -l sales.data.acl

-rw-r--r--+ 1 bob users 1040 Sep 27 08:52 sales.data.acl

JASON CANNON

72

Changing Permissions

Permissions are also known as modes. That is why the command you

use to change permissions is called chmod, short for "change mode."

The format of the chmod command is chmod mode file. There are

two ways to specify the mode. The first way is called symbolic mode.

The symbolic mode format is chmod user_category operator

permission. Here is a table view of the chmod command symbolic

mode format.

Item Meaning

chmod The change mode command.

ugoa
The user category. One or more of u for user, g for group, o

for other, a for all.

+-=
One of +, -, or =. Use + to add permissions, - to subtract

them, or = to explicitly set them.

rwx
The permissions. One or more of r for read, w for write, and x

for execute.

You can add, subtract, or set permissions using user category and

permission pairs. For example, if you want to add the write permission

for the members of a file's group, you would specify chmod g+w

file.

$ ls -l sales.data

-rw-r--r-- 1 bob users 10400 Sep 27 08:52 sales.data

$ chmod g+w sales.data

$ ls -l sales.data

-rw-rw-r-- 1 bob users 10400 Sep 27 08:52 sales.data

Notice that after running chmod g+w sales.data the permissions

LEARN LINUX IN 5 DAYS

73

string changed from '-rw-r--r--' to '-rw-rw-r--'. Remember that the

permissions are displayed in the order of user, group, and other. The

group permission set now includes the w symbol indicating that the

write permission has been granted. Now the owner of the file (bob) and

members of the group (users) can read and write to the

sales.data file. Here is the reverse. This is how you would subtract

the write permission.

$ ls -l sales.data

-rw-rw-r-- 1 bob users 10400 Sep 27 08:52 sales.data

$ chmod g-w sales.data

$ ls -l sales.data

-rw-r--r-- 1 bob users 10400 Sep 27 08:52 sales.data

You can change more than one permission at a time. This time write and

execute permissions are added for the file's group.

$ ls -l sales.data

-rw-r--r-- 1 bob users 10400 Sep 27 08:52 sales.data

$ chmod g+wx sales.data

$ ls -l sales.data

-rw-rwxr-- 1 bob users 10400 Sep 27 08:52 sales.data

You can even set permissions on different user categories

simultaneously. Here is how to change permissions for the user and

group. Notice that before running this command that the user already

has the write permissions. Using + to add permissions does not negate

any existing permissions, it just adds to them.

$ ls -l sales.data

-rw-r--r-- 1 bob users 10400 Sep 27 08:52 sales.data

$ chmod ug+wx sales.data

$ ls -l sales.data

-rwxrwxr-- 1 bob users 10400 Sep 27 08:52 sales.data

If you want to set different permissions for different user categories,

you can separate the specifications with a comma. You can mix and

match to produce the outcome you desire. Here is how you can specify

JASON CANNON

74

rwx for user while adding x for group.

$ ls -l sales.data

-rw-r--r-- 1 bob users 10400 Sep 27 08:52 sales.data

$ chmod u=rwx,g+x sales.data

$ ls -l sales.data

-rwxr-xr-- 1 bob users 10400 Sep 27 08:52 sales.data

If you want to set the file to be just readable by everyone, run chmod

a=r file. When you use the equal sign (=) the permission are set to

exactly what you specify. If you specify just read, then only read will be

available regardless of any existing permissions.

$ ls -l sales.data

-rw-r--r-- 1 bob users 10400 Sep 27 08:52 sales.data

$ chmod a=r sales.data

$ ls -l sales.data

-r--r--r-- 1 bob users 10400 Sep 27 08:52 sales.data

If you do not specify permissions following the equal sign, the

permissions are removed. Here is an illustration of this behaviour

$ ls -l sales.data

-rw-r--r-- 1 bob users 10400 Sep 27 08:52 sales.data

$ chmod u=rwx,g=rx,o= sales.data

$ ls -l sales.data

-rwxr-x--- 1 bob users 10400 Sep 27 08:52 sales.data

Numeric Based Permissions

In addition to symbolic mode, octal mode can be used with chmod to

set file and directory permissions. Understanding the concepts behind

symbolic mode will help you learn octal mode. However, once you learn

octal mode you may find that it is even quicker and easier to use than

symbolic mode. Since there are only a few common and practical

permission modes they can be readily memorized and recalled.

In octal mode permissions are based in binary. Each permission type is

treated as a bit that is either set to off (0) or on (1). In permissions,

LEARN LINUX IN 5 DAYS

75

order has meaning. Permissions are always in read, write, and execute

order. If r, w, and x are all set to off, the binary representation is 000. If

they are all set to on, the binary representation is 111. To represent

read and execute permissions while omitting write permissions, the

binary number is 101.

r w x

0 0 0 Binary Value for off

1 1 1 Binary Value for on

r w w

0 0 0 Base 10 (decimal) value for off

4 2 1 Base 10 (decimal) value for on

To get a number that can be used with chmod, convert the binary

representation into base 10 (decimal). The shortcut here is to

remember that read equals 4, write equals 2, and execute equals 1. The

permissions number is determined by adding up the values for each

permission type. There are eight possible values from zero to seven,

hence the name octal mode. This table demonstrates all eight of the

possible permutations.

JASON CANNON

76

Octal Binary String Description

0 000 --- No permissions

1 001 --x Execute only

2 010 -w- Write only

3 011 -wx Write and execute (2 + 1)

4 100 r-- Read only

5 101 r-x Read and execute (4 + 1)

6 110 rw- Read and write (4 + 2)

7 111 rwx Read, write, and execute (4+2+1)

Again, in permissions order has meaning. The user categories are always

in user, group, and other order. Once you determine the octal value for

each category you specify them in that order. For example, to get -

rwxr-xr--, run chmod 754 file. That means the user (owner) of

the file has read, write, and execute permission; the members of the

file's group have read and execute permission; and others have read

permissions.

 U G O

Symbolic rwx r-x r--

Binary 111 101 100

Decimal 7 5 4

LEARN LINUX IN 5 DAYS

77

Commonly Used Permissions

Here are the most commonly used permissions. These five permissions

will let you do just about anything you need to permissions wise.

Symbolic Octal Use Case / Meaning

-rwx------ 700

Ensures a file can only be read, edited, and

executed by the owner. No others on the

system have access.

-rwxr-xr-x 755
Allows everyone on the system to execute the

file but only the owner can edit it.

-rw-rw-r-- 664
Allows a group of people to modify the file and

let others read it.

-rw-rw---- 660
Allows a group of people to modify the file and

not let others read it.

-rw-r--r-- 644
Allows everyone on the system to read the file

but only the owner can edit it.

When you encounter 777 or 666 permissions, ask yourself "Is there a

better way to do this?" "Does everybody on the system need write

access to this?" For example, if a script or program is set to 777, then

anyone on the system can make changes to that script or program.

Since the execute bit is set for everyone, that program can then be

executed by anyone on system. If malicious code was inserted either on

purpose or on accident it could cause unnecessary trouble. If multiple

people need write access to a file consider using groups and limiting the

access of others. It is good practice to avoid using 777 and 666

permission modes.

JASON CANNON

78

Working with Groups

If you work on the sales team and each member needs to update the

sales.report file, you would set the group to sales using the

chgrp command and then set the permissions to 664 (rw-rw-r--).

You could even use 660 (rw-rw---) permissions if you want to make

sure only members of the sales team can read the report. Technically

774 (rwxrwxr--) or 770 (rwxrwx---) permissions work also, but

since sales.report is not an executable program it makes more

sense to use 664 (rw-rw-r--) or 660 (rw-rw----).

When you create a file its group is set to your primary group. This

behaviour can be overridden by using the newgrp command, but just

keep in mind when you create a file it typically inherits your default

group. In the following example Bob's primary group is users. Note

that the format of the chgrp command is chgrp GROUP FILE.

$ nano sales.report

$ ls -l sales.report

-rw-r--r-- 1 bob users 6 Dec 4 20:41 sales.report

$ chgrp sales sales.report

$ ls -l sales.report

-rw-r--r-- 1 bob sales 6 Dec 4 20:41 sales.report

$ chmod 664 sales.report

$ ls -l sales.report

-rw-rw-r-- 1 bob sales 6 Dec 4 20:41 sales.report

Instead of keeping files in the home directories of various team

members, it is easier to keep them in a location dedicated to the team.

For example, you could ask the system administrator of the server to

create a /usr/local/sales directory. The group should be set to sales

and the permissions should be set to 775 (rwxrwxr-x) or 770

(rwxrwx---). Use 770 (rwxrwx---) if no one outside the sales

team needs access to any files, directories, or programs located in

/usr/local/sales.

LEARN LINUX IN 5 DAYS

79

$ ls -ld /usr/local/sales

drwxrwxr-x 2 root sales 4096 Dec 4 20:53

/usr/local/sales

$ mv sales.report /usr/local/sales/

$ ls -l /usr/local/sales

total 4

-rw-rw-r-- 1 bob sales 6 Dec 4 20:41 sales.report

Directory Permissions Revisited

This example demonstrates how permissions effect directories and their

contents. A common problem is having proper permissions set on a file

within a directory only to have the incorrect permissions on the

directory itself. Not having the correct permissions on a directory can

prevent the execution of the file, for example. If you are sure a file's

permissions have been set correctly, look at the parent directory. Work

your way towards the root of the directory tree by running ls -ld .

in the current directory, moving up to the parent directory with cd ..,

and repeating those two steps until you find the problem.

$ ls -dl directory/

drwxr-xr-x 2 bob users 4096 Sep 29 22:02 directory/

$ ls -l directory/

total 0

-rwxr--r-- 1 bob users 0 Sep 29 22:02 testprog

$ chmod 400 directory

$ ls -dl directory/

dr-------- 2 bob users 4096 Sep 29 22:02 directory/

$ ls -l directory/

ls: cannot access directory/testprog: Permission

denied

total 0

-????????? ? ? ? ? ? testprog

$ directory/testprog

-su: directory/testprog: Permission denied

$ chmod 500 directory/

$ ls -dl directory/

dr-x------ 2 bob users 4096 Sep 29 22:02 directory/

JASON CANNON

80

$ ls -l directory/

total 0

-rwxr--r-- 1 bob users 0 Sep 29 22:02 testprog

$ directory/testprog

This program ran successfully.

Default Permissions and the File Creation

Mask

The file creation mask is what determines the permissions a file will be

assigned upon its creation. The mask restricts or masks permissions,

thus determining the ultimate permission a file or directory will be

given. If no mask were present directories would be created with 777

(rwxrwxrwx) permissions and files would be created with 666 (rw-

rw-rw-) permissions. The mask can and is typically set by the system

administrator, but it can be overridden on a per account basis by

including a umask statement in your personal initialization files.

umask [-S] [mode] - Sets the file creation mask to mode if

specified. If mode is omitted, the current mode will be displayed. Using

the -S argument allows umask to display or set the mode with symbolic

notation.

The mode supplied to umask works in the opposite way as the mode

given to chmod. When you supply 7 to chmod, that is interpreted to

mean all permissions on or rwx. When you supply 7 to umask, that is

interpreted to mean all permissions off or ---. Think of chmod as

turning on, adding, or giving permissions. Think of umask as turning off,

subtracting, or taking away permissions.

A quick way to estimate what a umask mode will do to the default

permissions is to subtract the octal umask mode from 777 in the case

of directories and 666 in the case of files. Here is an example of a

umask 022 which is typically the default umask used by Linux

distributions or set by system administrators.

LEARN LINUX IN 5 DAYS

81

 Dir File

Base Permission 777 666

Minus Umask -022 -022

 ---- ----

Creation Permission 755 644

Using a umask of 002 is ideal for working with members of your group.

You will see that when files or directories are created the permissions

allow members of the group to manipulate those files and directories.

 Dir File

Base Permission 777 666

Minus Umask -002 -002

 ---- ----

Creation Permission 775 664

Here is another possible umask to use for working with members of

your group. Use 007 so that no permissions are granted to users

outside of the group.

 Dir File

Base Permission 777 666

Minus Umask -007 -007

 ---- ----

Creation Permission 770 660 *

Again, using this octal subtraction method is a good estimation. You can

see that the method breaks down with the umask mode of 007. In

reality, to get an accurate result each time you need to convert the octal

permissions into binary values. From there you use a bitwise NOT

operation on the umask mode and then perform a bitwise AND

operation against that and the base permissions.

It is fine to gloss over the subtleties here since there are only a few

practical umask modes to use. They are 022, 002, 077, and 007. Save

yourself the binary math homework and look at the following table

containing all the resulting permissions created by each one of the eight

mask permutations.

JASON CANNON

82

Octal Binary Dir Perms File Perms

0 000 rwx rw-

1 001 rw- rw-

2 010 r-x r--

3 011 r-- r--

4 100 -wx -w-

5 101 -w- -w-

6 110 --x ---

7 111 --- ---

Special Modes

Look at this output of umask when the mask is set to 022.

$ umask

0022

You will notice an extra leading 0. So far you have only been dealing

with three characters that represent permissions for user, group, and

other. There is a class of special modes. These modes are setuid, setgid,

and sticky. Know that these special modes are declared by prepending a

character to the octal mode that you normally use with umask or

chmod. The important point here is to know that umask 0022 is the

same as umask 022. Also, chmod 644 is the same as chmod 0644.

Even though special modes will not be covered in this book, here they

are for your reference. There are links at the end of this chapter so you

can learn more about these modes if you are so inclined.

LEARN LINUX IN 5 DAYS

83

setuid permission - Allows a process to run as the owner of the

file, not the user executing it.

setgid permission - Allows a process to run with the group of the

file, not of the group of the user executing it.

sticky bit - Prevents a user from deleting another user's files even

if they would normally have permission to do so.

umask Examples

Here are two examples of the effects umask modes have on file and

directory creation.

$ umask

0022

$ umask -S

u=rwx,g=rx,o=rx

$ mkdir a-dir

$ touch a-file

$ ls -l

total 4

drwxr-xr-x 2 bob users 4096 Dec 5 00:03 a-dir

-rw-r--r-- 1 bob users 0 Dec 5 00:03 a-file

$ rmdir a-dir

$ rm a-file

$ umask 007

$ umask

0007

$ umask -S

u=rwx,g=rwx,o=

$ mkdir a-dir

$ touch a-file

$ ls -l

total 4

drwxrwx--- 2 bob users 4096 Dec 5 00:04 a-dir

-rw-rw---- 1 bob users 0 Dec 5 00:04 a-file

JASON CANNON

84

Free Training Videos on Linux Permissions

I know learning Linux permissions can be challenging. That's why I've

recorded two videos that cover this subject in depth. In the videos I not

only explain the concepts behind Linux permissions, but I also

demonstrate them on an actual Linux server. Watching these will

reinforce what you've learned in this chapter and hopefully clear up any

confusion you might have. You can watch them here:

http://www.linuxtrainingacademy.com/perms/

http://www.linuxtrainingacademy.com/perms/

LEARN LINUX IN 5 DAYS

85

Deep Dive

 Binary Number System - There are only 10 kinds of people in the

world: those who understand binary and those who don't.

http://mathsisfun.com/binary-number-system.html

 Every Possible Umask Mode - An article that lists every possible

umask mode.

http://linuxtrainingacademy.com/all-umasks

 Linux Permissions Explained Videos

Watch these two videos that explain and demonstrate Linux file

system permissions.

http://www.linuxtrainingacademy.com/perms/

 Modes - Detailed permission information.

https://en.wikipedia.org/wiki/Modes_(Unix)

 SELinux - The official SELinux project page.

http://selinuxproject.org/

 Special File Permissions - An article describing setuid, setgid, and

the sticky bit.

http://docs.oracle.com/cd/E19683-01/806-4078/secfiles-69

 Ubuntu ACL Documentation – This applies not only to Ubuntu,

but to other Linux distributions as well.

http://help.ubuntu.com/community/FilePermissionsACLs

http://mathsisfun.com/binary-number-system.html
http://linuxtrainingacademy.com/all-umasks
http://www.linuxtrainingacademy.com/perms/
https://en.wikipedia.org/wiki/Modes_(Unix)
http://selinuxproject.org/
http://docs.oracle.com/cd/E19683-01/806-4078/secfiles-69
http://help.ubuntu.com/community/FilePermissionsACLs

LEARN LINUX IN 5 DAYS

86

FINDING FILES

If you ever need to locate a file or directory you can use the find

command. It can be used to find files by name, size, permissions, owner,

modification time, and more.

find [path...] [expression] - Recursively finds files in path

that match expression. If no arguments are supplied it find all files in the

current directory.

$ find

.

./.profile

./.bash_history

./PerfReviews

./PerfReviews/Fred

./PerfReviews/current

./PerfReviews/current/tps-violations.log

./PerfReviews/John

./sales.data

...

Here are some useful ways in which to use the find command.

LEARN LINUX IN 5 DAYS

87

find . -name pattern - Displays files whose name matches

pattern. This is case sensitive.

find . -iname pattern - Same as -name, but ignores case.

find . -ls - Performs an ls on each of the found files or directories.

find . -mtime num_days - Finds files that are num_days old.

find . -size num - Finds files that are of size num.

find . -newer file - Finds files that are newer than file.

find . -exec command {} \; - Run command against all the

files that are found.

Let's look at some examples. Let's say you are looking for a file or

directory named "apache." You think it is in /opt somewhere and are

not quite sure if it is "Apache" or "apache." You could provide find

with the path of /opt, use -iname to ignore case, and look for

"apache."

$ find /opt -iname apache

/opt/web/Apache

To find all the files in /usr/local that end in "conf", you can use this

command.

$ find /usr/local -name *conf

/usr/local/etc/dhcpd.conf

/usr/local/etc/httpd.conf

If you are looking for files that are more than 10 days old, but less than

13 days old in the current directory you can use this command.

$ find . -mtime +10 -mtime -13

./.profile

./PerfReviews

JASON CANNON

88

./PerfReviews/John

./tpsreports

./tpsreports/coversheet.doc

Find files that start with an "s" and perform an ls on them.

$ find . -name "s*" -ls

52 11 -rw-r--r-- 1 bob users 1040 Sep 27 08:52 ./sales.data

48 1 -rw-r--r-- 1 bob users 35 Sep 27 08:47 ./demos/sr.txt

53 112 -rw-r--r-- 1 bob sales 266 Sep 27 08:54 ./salesdemo.mp3

The -size argument to find takes a number followed by a letter that

represents the unit of space. Valid options are:

c for bytes

k for Kilobytes (units of 1024 bytes)

M for Megabytes (units of 1048576 bytes)

G for Gigabytes (units of 1073741824 bytes)

Here is an example of how to find files that are larger than 300

megabytes.

$ find . -size +300M

./PerfReviews/current/tps-violations.log

Here is how to find directories that are newer than a given file. In this

case you are looking for directories that are newer that "b.txt."

$ find . -type d -newer b.txt

./PerfReviews

./PerfReviews/current

./tpsreports

On some occasions you may want to run a command against a list of

files. You can use the find command with the -exec option to do this

sort of thing. Use a pair of braces ({}) to act as a placeholder for the

current file being processed. The command is terminated with the

LEARN LINUX IN 5 DAYS

89

semicolon (;) character. You need to either escape or quote the

semicolon like this ';' or like this \;. If you want to run the command

file FILE_NAME on every file in the current directory you would

use the following command.

$ find . -exec file {} \;

.: directory

./.profile: ASCII text

./.bash_history: ASCII text

./PerfReviews: directory

./PerfReviews/Fred: directory

./PerfReviews/current: directory

./PerfReviews/current/tps-violations.log: ASCII text

./PerformanceReviews/John: empty

./sales.data: data

As you can see find is a really powerful tool and it has even more

features than you have seen so far. Take a look at the man page or refer

to the links at this end of this chapter.

Locate - A fast find

Every time you run the find command it evaluates each file and

returns the appropriate response. This can be a slow process at times.

For instance, if you are looking for a file on the system and cannot

narrow its location down to a subdirectory you would run find / -

name something. That command looks at each and every file on the

system. If you know the file's name or at least part of its name and just

want to know where it resides, the locate command is the right tool

for that job.

locate pattern - List files that match pattern.

Once a day all the files on the system are indexed by a process called

updatedb. When you run locate it is simply querying the index or

database created by updatedb and not looking at each file on the

system. This is really, really fast. The down side is that the data is not in

JASON CANNON

90

real time. If you are trying to find a file you created just a few minutes

ago, chances are it is not yet indexed and locate will not find it. Also,

locate can potentially return a file that matches your search, but the

file may have removed from the system since the index was last

updated. On some servers locate is not installed or enabled, so your

only choice may be to use find.

Here is what it looks like when locate is disabled.

$ locate bob

locate: /var/locatedb: No such file or directory

If it is enabled you will get a quick response to your queries. Notice that

you do not need to know the entire file name, just a portion works.

$ locate tpsrep

/home/bob/tpsreports

/home/bob/tpsreports/coversheet.doc

/home/bob/tpsreports/sales-report.txt

Deep Dive

 Find - Ubuntu documentation on the find command.

https://help.ubuntu.com/community/find

 Locate - An article on the locate command.

http://www.linfo.org/locate.html

 The /etc/passwd file - An article on the /etc/passwd file.

http://www.linfo.org/etc_passwd.html

https://help.ubuntu.com/community/find
http://www.linfo.org/locate.html
http://www.linfo.org/etc_passwd.html

LEARN LINUX IN 5 DAYS

91

VIEWING AND EDITING FILES

Here are some simple commands that display the contents of files to

the screen.

cat file - Display the entire contents of file.

more file - Browse through a text file. Press the Spacebar to

advance to the next page. Press Enter to advance to the next line.

Type q to quit viewing the file. Commands are based on the vi editor,

which is covered in the next section.

less file - Like more but allows backward movement and pattern

searches.

head file - Output the beginning (or top) portion of file.

tail file - Output the ending (or bottom) portion of file.

This is how you might examine a file named file.txt with the

commands cat, tail, and more.

JASON CANNON

92

$ cat file.txt

This is the first line.

This is the second.

Here is some more interesting text.

Knock knock.

Who's there?

More filler text.

The quick brown fox jumps over the lazy dog.

The dog was rather impressed.

Roses are red,

Violets are blue,

All my base are belong to you.

Finally, the 12th and last line.

$ head file.txt

This is the first line.

This is the second.

Here is some more interesting text.

Knock knock.

Who's there?

More filler text.

The quick brown fox jumps over the lazy dog.

The dog was rather impressed.

Roses are red,

Violets are blue,

$ tail file.txt

Here is some more interesting text.

Knock knock.

Who's there?

More filler text.

The quick brown fox jumps over the lazy dog.

The dog was rather impressed.

Roses are red,

Violets are blue,

All my base are belong to you.

Finally, the 12th and last line.

$ more file.txt

Here is some more interesting text.

Knock knock.

Who's there?

...

LEARN LINUX IN 5 DAYS

93

By default head and tail only display ten lines. You can override this

behavior and tell them to display a specified number of lines. The

format is -n where n is the number of lines you want to display. If you

only want to display the first line of a file use head -1 file. Want to

display the last three lines? Then run tail -3 file.

$ head -2 file.txt

This is the first line.

This is the second.

$ tail -1 file.txt

Finally, the 12th and last line.

$

Viewing Files In Real Time

Using cat can be a fine way to view files that have fairly static content.

However, if you are trying to keep up with changes that are being made

in real time to a file, cat is not the best choice. A good example of files

that can change often and rapidly are log files. For example, you may

need to start a program and look at that program's log file to see what it

is doing. For this case, use the tail -f file command.

tail -f file - Follow the file. Displays data as it is being written to

the file.

$ tail -f /opt/app/var/log.txt

Oct 10 16:41:17 app: [ID 107833 user.info] Processing

request 7680687

Oct 10 16:42:28 app: [ID 107833 user.err] User pat

denied access to admin functions

...

Editing Files

Nano

If you need to edit a file right now and do not want to spend any time

JASON CANNON

94

learning obscure editor commands, use nano. Nano is a clone of

pico, so if for some reason the nano command is not available, pico

probably is. It's not as powerful as some other editors, but it's definitely

easier to learn.

When you start nano you will see the file's contents and a list of

commands at the bottom of the screen. To run the commands, replace

the caret symbol (^) with the Ctrl key. For example, to exit nano type

Ctrl-x.

Editing in nano is quite easy. The up and down arrow keys will take you

to the previous or next lines as expected. The right and left arrow keys

let you navigate forwards and backwards on the same line. Simply type

the desired text into the editor. To save the file, type Ctrl-o. If you

forget to save the file before you exit, nano will ask you if you want to

save the file. To learn more type Ctrl-g for help.

Vi

While nano is great for simple edits, vi and emacs have more

advanced and powerful features. There is a learning curve to using

these editors as they are not exactly intuitive. It will require a bit of a

time investment to become proficient. Let's start by looking at vi.

LEARN LINUX IN 5 DAYS

95

vi [file] - Edit file.

vim [file] - Same as vi, but with more features.

view [file] - Starts vim in read-only mode. Use view when you

want to examine a file but not make any changes.

Vim stands for "Vi IMproved." It is compatible with the commands

found in vi. Some of the additional features of vim include syntax

highlighting, the ability to edit files over the network, multi-level

undo/redo, and screen splitting. On many Linux distributions when you

invoke vi, you are actually running vim.

One advantage of knowing vi is that vi or a vi variant like vim is

always available on the system. Another advantage is that once you

learn the key mappings for vi you can apply them to other commands

like man, more, less, view, and even your shell.

Vi Modes

Command Mode

Vi has the concept of modes. You are always working in one of three

modes: command mode, insert mode, or line mode. When vi starts

you are placed into command mode. To get back to command mode at

any time hit the escape key (Esc). Letters typed while in command

mode are not sent to the file, but are rather interpreted as commands.

Command mode allows you to navigate about the file, perform

searches, delete text, copy text, and paste text.

Here are some commonly used key bindings for navigation.

k - Up one line.

j - Down one line.

JASON CANNON

96

h - Left one character.

l - Right one character.

w - Right one word.

b - Left one word.

^ - Go to the beginning of the line.

$ - Go to the end of the line.

Note that commands are case sensitive. For example, if you want to

move down one line type the lowercase j. The uppercase J joins lines

together. The original vi editor did not employ the use of arrow keys,

however vim does, so you may find that you can use arrow keys on

your system. The advantages of learning the original key bindings are 1)

they always work and 2) it's faster since your hand does not have to

leave the home row.

Insert mode

To enter insert mode, press one of the following keys.

i - Insert at the cursor position.

I - Insert at the beginning of the line.

a - Append after the cursor position.

LEARN LINUX IN 5 DAYS

97

A - Append at the end of the line.

After entering into insert mode, type the desired text. When you are

finished, type Esc to return to command mode.

Line mode

To enter line mode you must start from command mode and then type

a colon (:) character. If you are in insert mode, type Esc to get back to

command mode and then type a colon for line mode. Here are some of

the most common line mode commands you will want to know.

:w - Writes (saves) the file.

:w! - Forces the file to be saved even if the write permission is not set.

This only works on files you own.

:q - Quit. This will only works if there have not been any modifications

to the file.

:q! - Quit without saving changes made to the file.

:wq! - Write and quit. After modifying a file this command ensures it

gets saved and closes vi.

:x - Same as :wq.

:n - Positions the cursor at line n. For example, :5 will place the cursor

on the fifth line in the file.

:$ - Positions the cursor on the last line of the file.

:set nu - Turn on line numbering.

:set nonu - Turn off line numbering.

:help [subcommand] - Get help. If you want more information on

JASON CANNON

98

the :w command type :help :w.

Mode Key Description

Command Esc Used to navigate, search, and copy/paste text.

Insert
i I

a A

Also called text mode. Allows text to be inserted

in the file.

Line :

Also called command-line mode. Save the file,

quit vi, replace text, and perform some

navigation.

Here is a screenshot of vim. Tildes (~) represent lines beyond the end

of the file.

LEARN LINUX IN 5 DAYS

99

Advanced Editing with vi

You can repeat commands in vi by preceding them with a number. For

instance, if you would like to move the cursor up 5 lines type 5k. If you

would like to insert a piece of text 80 times, type 80i and start entering

the text. Once you hit Esc to return to command mode the text you

typed will be repeated 80 times. If you would like to make a line of

asterisks, you could type 80i*Esc. Can you start to see how vi is

more powerful than an editor like nano?

Deleting Text

x - Delete a character.

dw - Delete a word. To delete five words, type d5w. The repeating

concept in vi shows up in many places.

dd - Delete a line. To delete 3 lines, type 3dd.

D - Delete from the current position to the end of the line.

Changing Text

r - Replace the current character.

cw - Change the current word.

cc - Change the current line.

c$ - Change the text from the current position to the end of the line.

C - Same as c$.

~ - Reverses the case of a character.

Copying and Pasting

yy - Yank (copy) the current line.

JASON CANNON

100

y<position> - Yank the <position>. For example, to yank a word

type yw. To yank three words type y3w.

p - Paste the most recent deleted or yanked text.

Undo / Redo

u - Undo.

Ctrl-r - Redo.

Searching

/<pattern> - Start a forward search for <pattern>.

?<pattern> - Start a reverse search for <pattern>.

Emacs

Emacs is another powerful editor. Some people really find themselves

drawn to vi while others thoroughly enjoy using emacs. It's a bit of a

rivalry in the Linux world, actually. Experiment with emacs and vi to

see which one works for you. You can't make a bad choice as they are

both great editors.

emacs [file] - Edit file.

When reading emacs documentation know that C-<char> means to

hold down the Ctrl key while pressing <char>. For example, C-h

means to hold down the Ctrl key while pressing the h key. If you see

C-h t, that means to hold down Ctrl key while pressing the h key,

release the Ctrl key and then type the letter t.

When you see M-<char>, that means hold down the "meta" key,

which is the Alt key, while pressing <char>. You can also substitute the

Esc key for the Alt key. So M-f translates to holding down the Alt

key and pressing f or pressing and releasing Esc followed by typing the

LEARN LINUX IN 5 DAYS

101

f key. You may need to use Esc for the meta key since Alt may be

intercepted by your terminal program, for instance. If you want to

simplify things, always use Esc for the meta key as it will work in all

situations.

Here are some helpful emacs commands.

C-h - Help.

C-x C-c - Exit. While holding down Ctrl press x, continue to hold

down Ctrl and press c.

C-x C-s - Save the file.

C-h t - Emacs has a nice built-in tutorial.

C-h k <key> - Describe key. Use this to get help on a specific key

command or key combination.

Navigating

C-p - Previous line.

C-n - Next line.

C-b - Backward one character.

C-f - Forward one character.

M-f - Forward one word.

M-b - Backward one word.

C-a - Go to the beginning of the line.

C-e - Go to the end of the line.

M-< - Go to the beginning of the file.

JASON CANNON

102

M-> - Go to the end of the file.

Deleting Text

C-d - Delete a character.

M-d - Delete a word.

Copying and Pasting

C-k - Kill (cut) the rest of the current line of text. To kill the entire line,

position the cursor at the beginning of the line.

C-y - Yank (or paste) from the previously killed text.

C-x u - Undo. Keep repeating for multi-level undo.

Searching

C-s - Start a forward search. Type the text you are looking for. Press C-

s again to move to the next occurrence. Press Enter when you are

done searching.

C-r - Start a reverse search.

Repeating

Like vi, emacs provides a way to repeat a command.

C-u N <command> - Repeat <command> N times.

For instance, to kill three lines of text type Ctrl-U 3 Ctrl-k.

LEARN LINUX IN 5 DAYS

103

You have only scratched the surface with the vi and emacs editors.

There is so much more to learn if you are interested. Both editors have

features that include macros, global replace, and more. Entire books

have been written on each of the these editors.

Graphical Editors

So far you have learned about command line editors that are

appropriate to use when you connect to a server via ssh. However, if

you are running Linux as a desktop operating system you might be

interesting in some graphical text editors and word processors. Here are

some for your consideration.

 emacs - Emacs has a graphical mode, too.

 gedit - The default text editor for the Gnome desktop

environment.

 gvim - The graphical version of vim.

 kedit - The default text editor for the KDE desktop

environment.

JASON CANNON

104

If you are looking for a MicroSoft Word replacement, consider AbiWord

or LibreOffice. LibreOffice not only includes a word processor, but it is a

complete office suite with a spreadsheet program, a database, and

presentation software.

If you are looking for a source code editor to aid in computer

programming, look at Geany, jEdit, or Kate. Sublime Text is another

option. It is a commercial product that runs on Windows, Mac, and

Linux.

Specifying a Default Editor

Some commands rely on the $EDITOR environment variable to tell

them which program to use for editing. Since cron's primary purpose is

to schedule jobs, it delegates the task of editing files to another

program. The crontab -e command invokes the editor specified by

the $EDITOR environment variable. You can set $EDITOR in your

personal initialization files to ensure your favorite editor is used, be it

nano, emacs, vi, or something else.

$ echo $EDITOR

vi

LEARN LINUX IN 5 DAYS

105

Deep Dive

 Emacs How To - An emacs tutorial.

http://help.ubuntu.com/community/EmacsHowto

 Emacs built-in tutorial - Start emacs and type Ctrl-h t.

 The Beginner’s Guide to Nano

http://www.howtogeek.com/howto/42980/

 Vi tutorial

https://www.washington.edu/computing/unix/vi.html

 vimtutor - Run vimtutor from the command line start the

vim tutorial.

 Welcome Back to Shell - The commands more and less are

called pagers because they allow you to page through a file. You

will learn more about them in the "Welcome Back to Shell"

chapter.

http://help.ubuntu.com/community/EmacsHowto
http://www.howtogeek.com/howto/42980/
https://www.washington.edu/computing/unix/vi.html

LEARN LINUX IN 5 DAYS

106

COMPARING FILES

If you want to compare two files and display the differences you can use

diff, sdiff, or vimdiff.

diff file1 file2 - Compare two files.

sdiff file1 file2 - Compare two files side by side.

vimdiff file1 file2 - Highlight the differences between two

files in the vim editor.

$ cat secret

site: facebook.com

user: bob

pass: Abee!

$ cat secret.bak

site: facebook.com

user: bob

pass: bee

$ diff secret secret.bak

3c3

LEARN LINUX IN 5 DAYS

107

< pass: Abee!

> pass: bee

$ sdiff secret secret.bak

site: facebook.com site: facebook.com

user: bob user: bob

pass: Abee! | pass: bee

In the diff output, the text following the less-than sign (<) belongs to

the first file. The text following the greater-than sign (>) belongs to the

second file. The first line of the diff output provides some additional

information. The first number represents line numbers from the first file

and the second number represent lines from the second file. The middle

character separating the line numbers will be a c meaning change, a d

meaning deletion, or an a meaning an addition. In this example the

third line of the first file is changed from "pass: Abee!" to the text on

the third line in the second file which is "pass: bee."

In the sdiff output the pipe (|) character means that the text differs in

the files on that line. You will also see the less-than sign (<) meaning

that line only exists in the first file. The greater-than sign (>) means that

line only exists in the second file.

Here is a screenshot of vimdiff secret secret.bak

demonstrating how the changes are highlighted using color.

LEARN LINUX IN 5 DAYS

108

DETERMINING A FILE'S TYPE

There are clues as to what a file might contain. For instance, some files

will have extensions. If a file ends in .txt, it is probably a text file. If a

file has execute permissions, it might be a program. An easy way to

determine the type of a file is to run the file command against it.

file file - Display the file type.

$ file /etc/passwd

/etc/passwd: ASCII text

$ file *

bin: directory

bob.tar: POSIX tar archive

test.data: data

test.txt: ASCII English text

email-reports.sh: Bourne-Again shell script, ASCII

text executable

LEARN LINUX IN 5 DAYS

109

SEARCHING IN FILES

Searching for Text in ASCII Files

If you are looking for text within a file, use the grep command.

grep pattern file - Search for pattern in file.

grep -v pattern file - Invert match. Return lines from file that

do not match pattern.

$ cat secret

site: facebook.com

user: bob

pass: Abee!

$ grep user secret

user: bob

$ grep o secret

site: facebook.com

user: bob

$ grep -v o secret

pass: Abee!

JASON CANNON

110

Here are some more common options to use with grep.

grep -i - Perform a search, ignoring case.

grep -c - Count the number of occurrences in a file.

grep -n - Precede output with line numbers from the file.

$ grep User secret

$ grep -i User secret

user: bob

$ grep -ci User secret

1

$ grep -ni User secret

2:user: bob

Searching For Text in Binary Files

If you run grep against a binary file, it will simply display whether or

not that information was found in the file, but it will not display the

surrounding text. To look at textual data within a binary file use the

strings command.

strings file - Display printable strings in binary files.

$ grep -i john BlueTrain.mp3

Binary file BlueTrain.mp3 matches

$ strings BlueTrain.mp3 | grep -i john

John Coltrane

John Coltrane

$

Pipes

You will notice that two commands have been chained together with a

vertical bar, also known as the pipe symbol. The pipe (|) means take the

standard output from the preceding command and pass it as the

LEARN LINUX IN 5 DAYS

111

standard input to the following command. If the first command displays

error messages those will not be passed to the second command. Those

error messages are called "standard error" output. You will learn how to

manipulate standard error output in the "Redirection" chapter.

Also notice that in the first occurrence of the grep command the

format of grep -i pattern file was used. In the second, the

format of grep -i pattern was used. In the first format the input

for grep came from file. In the second format the input for grep came

from the preceding command via the pipe.

If you run strings BlueTrain.mp3 a lot of text will be displayed

on the screen. Instead of letting that text pass you by, you can feed it to

grep -i john using a pipe. The result, as you can see, is that 'John

Coltrane' was found twice in the strings BlueTrain.mp3 output.

Pipes aren't limited to just two commands. You can keep chaining

commands together until you get the desired result you are looking for.

Let's feed the output from grep to head -1 to limit the output to just

one line.

$ strings BlueTrain.mp3 | grep -i john | head -1

John Coltrane

$

Let's say you only want to display the second word of the above output.

You can use the cut command to accomplish that goal.

cut [file] - Cut out selected portions of file. If file is omitted, use

standard input.

cut -d delimiter - Use delimiter as the field separator.

cut -f N - Display the Nth field.

To extract 'Coltrane' from 'John Coltrane', use a space as the delimiter

(-d ' ') and print the second field (-f 2). The space was quoted

JASON CANNON

112

since spaces are typically ignored by the shell. Single quotes or double

quotes work the same in this situation.

$ strings BlueTrain.mp3|grep -i john|head -1|cut -d ' ' -f2

Coltrane

$

You will find that there are many small commands that do just one thing

well. Some examples are awk, cat, cut, fmt, join, less, more,

nl, pr, sed, seq, sort, tr, and uniq. Let's take an example using

some of those commands and chain them together with pipes.

The /etc/passwd file contains a list of accounts on the system and

information about those accounts. In this example, the goal is to find all

of the users named "bob" listed in the /etc/passwd file and print

them in alphabetical order by username in a tabular format. Here is one

way you could do that.

$ cd /etc

$ grep bob passwd

bob:x:1000:1000:Bob:/home/bob:/bin/bash

bobdjr:x:1001:1000:Robert

Downey:/home/bobdjr:/bin/bash

bobh:x:1002:1000:Bob Hope:/home/bobh:/bin/bash

bobs:x:1003:1000:Bob Saget:/home/bobs:/bin/bash

bobd:x:1004:1000:Bob Dylan:/home/bobd:/bin/bash

bobb:x:1005:1000:Bob Barker:/home/bobb:/bin/bash

$ grep bob passwd | cut -f1,5 -d:

bob:Bob

bobdjr:Robert Downey

bobh:Bob Hope

bobs:Bob Saget

bobd:Bob Dylan

bobb:Bob Barker

$ grep bob passwd | cut -f1,5 -d: | sort

bob:Bob

bobb:Bob Barker

bobd:Bob Dylan

bobdjr:Robert Downey

bobh:Bob Hope

LEARN LINUX IN 5 DAYS

113

bobs:Bob Saget

$ grep bob passwd | cut -f1,5 -d: | sort | sed 's/:/ /'

bob Bob

bobb Bob Barker

bobd Bob Dylan

bobdjr Robert Downey

bobh Bob Hope

bobs Bob Saget

$ grep bob passwd | cut -f1,5 -d: | sort | sed 's/:/ /' |column -t

bob Bob

bobb Bob Barker

bobd Bob Dylan

bobdjr Robert Downey

bobh Bob Hope

bobs Bob Saget

The above example shows the step-by-step thought process of how to

go from one set of output and pipe it as the input to the next command.

If you need to perform this action often you could save the final

command for later use. As you can see, this simple concept of piping

makes Linux extremely powerful.

Pipe Output to a Pager

Another common use of pipes is to control how output is displayed to

your screen. If a command produces a significant amount of output it

can scroll off your screen before you have the chance to examine it. To

control the output use a pager utility such as more or less. You've

already used those commands directly on files, but keep in mind they

can take redirected input too.

$ grep bob /etc/passwd | less

bob:x:1000:1000:Bob:/home/bob:/bin/bash

bobdjr:x:1001:1000:Robert

Downey:/home/bobdjr:/bin/bash

bobh:x:1002:1000:Bob Hope:/home/bobh:/bin/bash

bobb:x:1005:1000:Bob Barker:/home/bobb:/bin/bash

JASON CANNON

114

...

$ ls -l /usr/bin | less

total 62896

-rwxr-xr-x 1 root root 35264 Nov 19 2012 [

-rwxr-xr-x 1 root root 96 Sep 26 20:28 2to3-2.7

-rwxr-xr-x 1 root root 96 Sep 25 18:23 2to3-3.2

-rwxr-xr-x 1 root root 16224 Mar 18 2013 a2p

-rwxr-xr-x 1 root root 55336 Jul 12 2013 ab

....

$ ps -ef | more

UID PID PPID C STIME TTY TIME CMD

root 1 0 0 Jan08 ? 00:00:00 /sbin/init

root 2 0 0 Jan08 ? 00:00:00 [kthreadd]

root 3 2 0 Jan08 ? 00:00:01 [ksoftirqd/0]

root 6 2 0 Jan08 ? 00:00:00 [migration/0]

root 7 2 0 Jan08 ? 00:00:04 [watchdog/0]

...

$

LEARN LINUX IN 5 DAYS

115

DAY 4

JASON CANNON

116

DELETING, COPYING, MOVING, AND RENAMING FILES

Removing Files

Eventually you will get tired of all the old files you created just laying

around, cluttering up your home directory, and taking up precious

space. To delete them, use the rm command.

rm file - Remove file.

rm -r directory - Remove the directory and its contents

recursively. If you want to remove a directory with rm, you have to

supply the -r argument.

rm -f file - Force removal and never prompt for confirmation.

Search patterns can be used to delete multiple files at once. It's a good

idea to double check what you are going to remove with ls before you

execute rm.

LEARN LINUX IN 5 DAYS

117

$ ls s*

sales-lecture.mp3 sales.data secret secret.bak

$ rm s*

$ ls -d .*

. .. .profile .bash_history

$ rm .*

rm: cannot remove ‘.’: Is a directory

rm: cannot remove ‘..’: Is a directory

$ ls -d .*

. ..

Note that rm .* will not remove . (this directory) and .. (the parent

directory).

Copying Files

To copy files, use the cp command. If you want to create a copy of a file

you can run cp source_file destination_file. You can also

copy a file, or a series of files, to a directory by using cp file(s)

dir.

cp source_file destination_file - Copy source_file to

destination_file.

cp source_file1 [source_fileN ...]

destination_directory - Copy source_files to

destination_directory.

cp -i source_file destination_file - Run cp in

interactive mode. If the destination_file exists, cp will prompt you

before it overwrites the file.

cp -r source_directory destination - Copy

source_directory recursively to destination. If destination exists, copy

source_directory into destination, otherwise create destination with the

contents of directory.

JASON CANNON

118

$ cp file1 file2

$ mkdir dir

$ cp file1 file2 dir/

$ ls dir

file1 file2

$ rm dir/*

$ cp file1 file2 dir

$ cp -i file1 file2

overwrite file2? (y/n [n]) n

not overwritten

$ cp -r dir dir2

$ ls dir2

file1 file2

$ cp dir dir3

cp: dir is a directory (not copied).

$ mkdir dir3

$ cp -r dir dir2 dir3

$ ls dir3

dir dir2

$ tree dir3

dir3

├── dir

│ ├── file1

│ └── file2

└── dir2

 ├── file1

 └── file2

Moving and Renaming Files

The way to rename files or directories in Linux is to use the mv

command. The mv command moves files from one location to another.

This can be used to relocate files or directories and it can be used to

rename them also.

mv source destination - Move files or directories. If destination

is a directory, source will be moved into destination. Otherwise source

will be renamed to destination.

LEARN LINUX IN 5 DAYS

119

mv -i source destination - Run mv in interactive mode. If the

destination exists, mv will prompt you before it overwrites the file.

Look at the following examples. They should make it clear how the mv

command behaves in various situations.

$ ls -F

dir/ dir2/ dir3/ file1 file2

$ mv dir firstdir

$ ls -F

dir2/ dir3/ file1 file2 firstdir/

$ mv file1 file1.renamed

$ ls -F

dir2/ dir3/ file1.renamed file2

firstdir/

$ mv file1.renamed firstdir/

$ ls -F

dir2/ dir3/ file2 firstdir/

$ ls -F firstdir/

file1 file1.renamed file2

$ cat firstdir/file1

This text started out in file1.

$ cat firstdir/file2

This text started out in file2.

$ mv firstdir/file1 firstdir/file2

$ cat firstdir/file2

This text started out in file1.

$ ls -F firstdir/

file1.renamed file2

$ mv -i firstdir/file1.renamed firstdir/file2

overwrite firstdir/file2? (y/n [n]) n

not overwritten

$

In the above example, a directory was renamed with mv dir

firstdir. Next, a file was renamed with mv file

file1.renamed. Next file1.renamed was relocated to the

firstdir directory with the mv file1.renamed firstdir/

command. A file was overwritten with the mv firstdir/file1

JASON CANNON

120

firstdir/file2 command. If you want to be prompted before a

file is overwritten use the -i option.

LEARN LINUX IN 5 DAYS

121

SORTING DATA

You have already seen the sort command in use. In the simplest form

it sorts lines of text alphabetically.

sort file - Sort text in file.

sort -k F file - Sort by key. The F following -k is the field

number.

sort -r file - Sort in reverse order.

sort -u file - Sort text in file, removing duplicate lines.

JASON CANNON

122

$ cat more-secrets

tags: credentials

site: facebook.com

user: bob

pass: Abee!

tags: credentials

$ sort more-secrets

pass: Abee!

site: facebook.com

tags: credentials

tags: credentials

user: bob

$ sort -u more-secrets

pass: Abee!

site: facebook.com

tags: credentials

user: bob

$ sort -ru more-secrets

user: bob

tags: credentials

site: facebook.com

pass: Abee!

$ sort -u -k2 more-secrets

pass: Abee!

user: bob

tags: credentials

site: facebook.com

LEARN LINUX IN 5 DAYS

123

CREATING A COLLECTION OF FILES

If you want to bundle a group of files and/or directories together in an

archive, you can use the tar command. You may want to create a copy

or backup of a group of files. You may have several files you want to

transfer at once or as a set. In these situations, tar can help.

tar [-] c|x|t f tarfile [pattern] - Create, extract or list

contents of a tar archive using pattern, if supplied.

You will notice that tar does not require a hyphen (-) to precede its

arguments. Traditionally the hyphen is excluded, but tar still works with

it. If you see tar cf file.tar it is the same as tar -cf

file.tar. Here is a look at some of the most commonly used tar

options.

c - Create a tar archive.

x - Extract files from the archive.

t - Display the table of contents (list).

v - Causes tar to be verbose.

JASON CANNON

124

f file - The tar archive file to perform operations against.

In the following example tar is used to create (tar cf tps.tar) an

archive, list the contents of the archive (tar tf tps.tar) and

extract the contents (tar xf tps.tar).

$ tar cf tps.tar tpsreports/

$ tar tf tps.tar

tpsreports/

tpsreports/sales-report.txt

tpsreports/coversheet.doc

$ cd /tmp

$ tar xf /home/bob/tps.tar

$ ls tpsreports/

coversheet.doc sales-report.txt

$

If you would like to see the files that are getting placed into the archive

or extracted from the archive, use -v to enable verbose mode.

$ tar cvf misc.tar sec* tpsreports

secret

secret.bak

tpsreports/

tpsreports/sales-report.txt

tpsreports/coversheet.doc

$ tar xvf /home/bob/misc.tar

secret

secret.bak

tpsreports/

tpsreports/sales-report.txt

tpsreports/coversheet.doc

LEARN LINUX IN 5 DAYS

125

COMPRESSING FILES TO SAVE SPACE

gzip file - Compress file. The resulting compressed file is named

file.gz.

gunzip file - Uncompress files.

gzcat or zcat - Concatenates and prints compressed files.

You can use the command du to display how much space is used by a

file.

du - Estimates file usage.

du -k - Display sizes in Kilobytes.

du -h - Display sizes in human readable format. For example, 1.2M,

3.7G, etc.

Here are a couple of quick examples that demonstrate how to compress

and uncompress files.

JASON CANNON

126

$ du -k data

15360 data

$ gzip data

$ du -k data.gz

26 data.gz

$ ls data*

data.gz

$ gunzip data.gz

$ ls data*

data

$ du -k misc.tar

10 misc.tar

$ gzip misc.tar

$ du -k misc.tar*

misc.tar.gz

$

LEARN LINUX IN 5 DAYS

127

COMPRESSING ARCHIVES

In modern versions of the tar command gzip compression is built-in.

If you want to create, extract, or list the contents of a compressed

archive use the -z argument. As a matter of convention compressed tar

files will end in either .tar.gz or .tgz. Here is how this looks.

$ tar zcf tps.tgz tpsreports

$ ls *.tgz

tps.tgz

$ tar ztf tps.tgz

tpsreports/

tpsreports/sales-report.txt

tpsreports/coversheet.doc

$

If you run across an older version of tar without gzip compression

built-in, you can use pipes to create compressed archives. When a

hyphen (-) is used in place of a file name that means to use standard

output. Running the command tar cf - pattern will create an

archive of "pattern" and send the output to standard output which is

normally your screen. If you follow the command with a pipe that

standard output will be used as the input for the next command

following the pipe. To force gunzip to send its output to standard out,

JASON CANNON

128

use the -c argument. With this in mind, here is how you can create, list,

and extract a compressed archive using tar, gzip, and pipes.

$ tar cf - tpsreports | gzip > tps.tgz

$ ls *.tgz

tps.tgz

$ gunzip -c tps.tgz | tar tf -

tpsreports/

tpsreports/sales-report.txt

tpsreports/coversheet.doc

$ cd /tmp

$ gunzip -c /home/bob/tps.tgz | tar xf -

$ ls tpsreports/

coversheet.doc sales-report.txt

$

LEARN LINUX IN 5 DAYS

129

REDIRECTION

You have already learned how to redirect output from one command

and send it as input to another one by using pipes. In the previous

example you saw another way to redirect output using the greater-than

(>) sign. Let's take a closer look at I/O (input/output) redirection.

There are three default types of input and output. They are standard

input, standard output, and standard error. By default, standard input

comes from the keyboard and standard output and standard error are

displayed to the screen. Each one of these I/O types is given a file

descriptor. File descriptors are just numbers that represent open files.

For humans it is easier for us to reference files by name, but it is easier

for computers to reference them by number.

You may be thinking, "my keyboard isn't a file, nor is my screen." On

one level that is true, but on another level it is not. Linux represents

practically everything as a file. This abstraction allows you to do

powerful things like take the standard output of one command that

would normally be displayed to your screen and use it as input to

another command. It's easier to run cat file.txt | sort than it

is to type the entire contents of file.txt as the input to the sort

JASON CANNON

130

command.

To demonstrate this concept, run sort, type in some text, and press

Ctrl-d on a blank line. Here is how that looks.

$ sort

dddd

a

ccc

bb

<<<< Type Ctrl-d here >>>>

a

bb

ccc

dddd

$ cat file.txt

dddd

a

ccc

bb

$ cat file.txt | sort

a

bb

ccc

dddd

$

I/O Name
Abbreviation File Descriptor Number

standard input stdin 0

standard output stdout 1

standard error stderr 2

Use the greater-than sign (>) to redirect output and the less-than sign

(<) to redirect input. The explicit way of using redirection is to provide a

LEARN LINUX IN 5 DAYS

131

file descriptor number, however if it is omitted then file descriptor 0 is

assumed for input redirection and 1 for output redirection.

> - Redirects standard output to a file, overwriting (truncating) any

existing contents of the file. If no file exists, it creates one.

>> - Redirects standard output to a file and appends to any existing

contents. If no file exists, it creates one.

< - Redirects input from a file to the command preceding the less-than

sign.

$ ls -lF /opt/apache

drwxr-xr-x 2 root root 4096 Sep 14 12:21 2.3

drwxr-xr-x 2 root root 4096 Nov 27 15:43 2.4

lrwxrwxrwx 1 root root 5 Nov 27 15:43 current -> 2.4

-rw-r--r-- 1 root root 1048 Sep 14 12:58 README

$ ls -lF /opt/apache > files.txt

$ cat files.txt

drwxr-xr-x 2 root root 4096 Sep 14 12:21 2.3

drwxr-xr-x 2 root root 4096 Nov 27 15:43 2.4

lrwxrwxrwx 1 root root 5 Nov 27 15:43 current -> 2.4

-rw-r--r-- 1 root root 1048 Sep 14 12:58 README

$ ls -lF /opt/apache >> files.txt

$ cat files.txt

drwxr-xr-x 2 root root 4096 Sep 14 12:21 2.3

drwxr-xr-x 2 root root 4096 Nov 27 15:43 2.4

lrwxrwxrwx 1 root root 5 Nov 27 15:43 current -> 2.4

-rw-r--r-- 1 root root 1048 Sep 14 12:58 README

drwxr-xr-x 2 root root 4096 Sep 14 12:21 2.3

drwxr-xr-x 2 root root 4096 Nov 27 15:43 2.4

lrwxrwxrwx 1 root root 5 Nov 27 15:43 current -> 2.4

-rw-r--r-- 1 root root 1048 Sep 14 12:58 README

$ sort < files.txt

-rw-r--r-- 1 root root 1048 Sep 14 12:58 README

-rw-r--r-- 1 root root 1048 Sep 14 12:58 README

drwxr-xr-x 2 root root 4096 Nov 27 15:43 2.3

drwxr-xr-x 2 root root 4096 Nov 27 15:43 2.3

drwxr-xr-x 2 root root 4096 Sep 14 12:21 2.4

drwxr-xr-x 2 root root 4096 Sep 14 12:21 2.4

JASON CANNON

132

lrwxrwxrwx 1 root root 5 Nov 27 15:43 current -> 2.4

lrwxrwxrwx 1 root root 5 Nov 27 15:43 current -> 2.4

In the above examples ls -lF /opt/apache > files.txt is

the same as ls -lF /opt/apache 1> files.txt. Also, sort

< files.txt is the same as sort 0< files.txt. Do not use a

space between the file descriptor number and the redirection operator.

The file descriptor must immediately precede the redirection operator,

otherwise it will be interpreted as another item on the command line.

$ ls -lF /opt/apache 1 > files.txt

ls: 1: No such file or directory

$ ls -lF /opt/apache 1> files.txt

$ sort 0 < files.txt

sort: open failed: 0: No such file or directory

$ sort 0< files.txt

-rw-r--r-- 1 root root 1048 Sep 14 12:58 README

-rw-r--r-- 1 root root 1048 Sep 14 12:58 README

drwxr-xr-x 2 root root 4096 Nov 27 15:43 2.3

drwxr-xr-x 2 root root 4096 Nov 27 15:43 2.3

drwxr-xr-x 2 root root 4096 Sep 14 12:21 2.4

drwxr-xr-x 2 root root 4096 Sep 14 12:21 2.4

lrwxrwxrwx 1 root root 5 Nov 27 15:43 current -> 2.4

lrwxrwxrwx 1 root root 5 Nov 27 15:43 current -> 2.4

$

Input and output redirection can be combined. This example shows

files.txt being redirected as input for the sort command. The

output of the sort command is then redirected to the

sorted_files.txt file.

$ sort < files.txt > sorted_files.txt

$ cat sorted_files.txt

-rw-r--r-- 1 root root 1048 Sep 14 12:58 README

-rw-r--r-- 1 root root 1048 Sep 14 12:58 README

drwxr-xr-x 2 root root 4096 Nov 27 15:43 2.3

drwxr-xr-x 2 root root 4096 Nov 27 15:43 2.3

drwxr-xr-x 2 root root 4096 Sep 14 12:21 2.4

drwxr-xr-x 2 root root 4096 Sep 14 12:21 2.4

lrwxrwxrwx 1 root root 5 Nov 27 15:43 current -> 2.4

LEARN LINUX IN 5 DAYS

133

lrwxrwxrwx 1 root root 5 Nov 27 15:43 current -> 2.4

Standard Error

When a program encounters an error it reports its findings to standard

error. File descriptor 1 is for standard output, 2 is for standard error.

Remember that file descriptor 1 is the default file descriptor for output

redirection. This can mean that not all of the output generated by a

program is captured by default. Here is an example.

$ ls here not-here

ls: not-here: No such file or directory

here

$ ls here not-here > out

ls: not-here: No such file or directory

$ cat out

here

$ ls here not-here 2> out.err

here

$ cat out.err

ls: not-here: No such file or directory

$ ls here not-here 1> out 2> out.err

$ cat out

here

$ cat out.err

ls: not-here: No such file or directory

$

You will notice that when using > the error message was displayed to

the screen and not redirected to the out file. To redirect the error

messages you had to explicitly specify file descriptor 2 with 2>. You can

send standard output to one file while sending standard error to

another file. You can use this to your advantage by having one file that

contains known good output and another file that you can examine for

errors.

If you want to capture both standard output and standard error, use

JASON CANNON

134

2>&1. Normally with redirection a file follows the redirection operator.

If you want to use a file descriptor instead of a file name, use the

ampersand (&) symbol. So instead of redirecting standard error to a file

(2>out.err), redirect it to standard output (2>&1). If you omit &, 1

will be treated as a file named 1.

& - Used with redirection to signal that a file descriptor is being used

instead of a file name.

2>&1 - Combine standard error and standard output.

2> file - Redirect standard error to a file.

$ ls here not-here > out.both 2>&1

$ cat out.both

ls: not-here: No such file or directory

here

$

The command, ls here not-here > out.both 2>&1 means

"send the standard output of ls here not-here to file the named

out.both and append standard error to standard output." Since

standard error is redirected to standard output and standard output is

redirected to out.both, all output will be written to out.both.

Null Device

>/dev/null - Redirect output to nowhere.

If you want to ignore output, you can send it to the null device,

/dev/null. The null device is a special file that throws away whatever

is fed to it. You may hear people refer to it as the bit bucket. If you do

not want to see errors on your screen and you do not want to save

them to a file, you can redirect them to /dev/null.

$ ls here not-here 2> /dev/null

here

LEARN LINUX IN 5 DAYS

135

$ ls here not-here > /dev/null 2>&1

$

Deep Dive

 File Descriptors http://en.wikipedia.org/wiki/File_descriptor

 Here Documents

http://en.wikipedia.org/wiki/Here-document

 Null Device

http://en.wikipedia.org/wiki//dev/null

 Redirection

http://en.wikipedia.org/wiki/Redirection_(computing)

http://en.wikipedia.org/wiki/File_descriptor
http://en.wikipedia.org/wiki/Here-document
http://en.wikipedia.org/wiki/dev/null
http://en.wikipedia.org/wiki/Redirection_(computing)

136

TRANSFERRING AND COPYING FILES

You already know how to copy files from one location to another on the

same system using the cp command. But what if you want to copy files

from your local workstation to a Linux server or between Linux servers?

For that you can use SCP or SFTP.

SCP is secure copy and SFTP is SSH file transfer protocol. Sometimes

SFTP is referred to as secure file transfer protocol. SCP and SFTP are

both extensions of the secure shell (SSH) protocol. This means that if

you have SSH key authentication configured for SSH, it will also work

with SCP and SFTP.

In order to use SCP or SFTP you need a client. Mac and Linux come with

scp and sftp command line utilities. If you are running Windows, you

can use the PuTTY Secure Copy Client (pscp.exe) and the PuTTY

Secure File Transfer client (psftp.exe) programs. Command line

utilities aren't your only option. There are graphical clients for each

platform as well. Some run on Windows, Linux, and Mac like FileZilla,

while others only run on one platform like WinSCP for Windows.

LEARN LINUX IN 5 DAYS

137

JASON CANNON

138

scp source destination - Copy source to destination.

sftp [username@]host - Connect to host as username to begin a

secure file transfer session.

If you are looking for a more interactive experience where you can

examine the local and remote file systems, use SFTP. With SCP you need

to know what files you want to transfer before using the command.

Here is a sample SFTP session.

bobby@laptop:/tmp $ sftp bob@linuxsvr

bob@linuxsvr's password:

Connected to linuxsvr.

sftp> pwd

Remote working directory: /home/bob

sftp> ls -la

drwxr-xr-x 4 bob bob 4096 Dec 25 19:00 .

drwxr-xr-x 4 root root 4096 Dec 2 22:01 ..

-rw-r--r-- 1 bob bob 3655 Dec 2 22:02 .bashrc

-rw-r--r-- 1 bob bob 675 Apr 3 2012 .profile

drwx------ 2 bob bob 4096 Dec 25 19:00 .ssh

sftp> lpwd

Local working directory: /tmp

sftp> lls

file1.txt

sftp> put file1.txt

Uploading file1.txt to /home/bob/file1.txt

file1.txt

100% 18 0.0KB/s 00:00

sftp> ls

file1.txt

sftp> ls -la

drwxr-xr-x 4 bob bob 4096 Dec 25 19:02 .

drwxr-xr-x 4 root root 4096 Dec 2 22:01 ..

-rw-r--r-- 1 bob bob 3655 Dec 2 22:02 .bashrc

-rw-r--r-- 1 bob bob 675 Apr 3 2012 .profile

drwx------ 2 bob bob 4096 Dec 25 19:00 .ssh

-rw-rw-r-- 1 bob bob 18 Dec 25 19:02 file1.txt

sftp> quit

LEARN LINUX IN 5 DAYS

139

Using scp, you can copy from your local system to a remote system,

from a remote system to your local system, or from one remote system

to another remote system. Here is how that looks.

$ scp test.txt linuxsvr1:~/

test.txt 100% 35KB 35.3KB/s 00:00

$ scp linuxsvr1:~/test.txt .

test.txt 100% 35KB 35.3KB/s 00:00

$ scp linuxsvr1:~/test.txt linuxsvr2:/tmp/test-copy.txt

$

SCP and SFTP aren't the only ways to transfer files to remote systems.

Sometimes FTP (file transfer protocol) is enabled. In such cases you can

use the built-in ftp command on Linux and Mac and a graphical client

like WinSCP for windows. Just be aware that FTP is not using a secure

transfer protocol like SCP and SFTP. This means that your login

credentials are sent in plain text over the network. Also, the files that

you upload and download are not encrypted either. If given the choice

between SCP/SFTP or FTP, use SCP/SFTP.

bobby@laptop:~$ ftp linuxsvr

Connected to linuxsvr.

220 ubuntu FTP server (Version 6.4) ready.

Name (linuxsvr:bobby): bob

331 Password required for bob.

Password:

230 User bob logged in.

Remote system type is UNIX.

Using binary mode to transfer files.

ftp> pwd

257 "/home/bob" is current directory.

ftp> quit

221 Goodbye.

If FTP is not enabled, you will see a "Connection refused" error message.

JASON CANNON

140

bobby@laptop:~$ ftp linuxsvr

ftp: connect: Connection refused

ftp> quit

bobby@laptop:~$

LEARN LINUX IN 5 DAYS

141

Deep dive

 Connecting via SSH with Keys - SSH key information covered

earlier in this book.

 Cyberduck - FTP and SFTP client for Mac and Windows.

http://cyberduck.io/

 FileZilla - FTP and SFTP client for Mac, Linux, and Windows.

https://filezilla-project.org/

 FireFTP - FTP and SFTP client Firefox that is Mac, Linux, and

Windows compatible.

http://fireftp.net/

 PuTTY

http://www.LinuxTrainingAcademy.com/putty/

 PSCP.EXE - SCP client for Windows

 PSFTP.EXE - SFTP client for Windows

 Transmit - FTP and SFTP client for Mac.

http://www.panic.com/transmit/

 WinSCP - FTP and SFTP client for Windows.

http://winscp.net/

http://cyberduck.io/
https://filezilla-project.org/
http://fireftp.net/
http://www.linuxtrainingacademy.com/putty/
http://www.panic.com/transmit/
http://winscp.net/

142

WELCOME BACK TO SHELL

Customizing the Prompt

As you have seen in the "Welcome To Shell" chapter, default prompts

can vary from system to system. No matter what shell you are using,

you can customize your prompt by setting an environment variable. For

shells like bash, ksh, and sh the environment variable PS1 is used to

set the primary prompt string. The shells csh, tcsh, and zsh use the

prompt environment variable. The format string you place in the

environment variable determines the look and feel of your prompt.

Each shell uses different format strings so consult the documentation

for the shell that you are using.

Let's look at customizing the bash prompt since bash is the most

popular default shell for user accounts on Linux systems. These are

some of the commonly used formatting string options for bash. For a

complete list refer to the man page.

\d - the date in "Weekday Month Date" format (e.g., "Tue May 26")

\h - the hostname up to the first '.'

LEARN LINUX IN 5 DAYS

143

\H - the hostname

\n - newline

\t - the current time in 24-hour HH:MM:SS format

\T - the current time in 12-hour HH:MM:SS format

\@ - the current time in 12-hour am/pm format

\A - the current time in 24-hour HH:MM format

\u - the username of the current user

\w - the current working directory, with $HOME abbreviated with a

tilde

\W - the basename of the current working directory, with $HOME

abbreviated with a tilde

\$ - if the effective UID is 0, a #, otherwise a $

Here are some examples of changing the bash shell prompt by

manipulating the PS1 environment variable.

[bob@linuxsvr ~]$ echo $PS1

[\u@\h \w]\$

[bob@linuxsvr ~]$ PS1="\u@\h \$ "

bob@linuxsvr $ PS1="<\t \u@\h \w>\$ "

<16:42:58 bob@linuxsvr ~>$ cd /tmp

<16:43:02 bob@linuxsvr /tmp>$ PS1="\d \t \h \W>\$ "

Mon Nov 18 16:45:51 linuxsvr tmp>$ PS1="\t\n[\h \w]\$ "

16:46:47

[linuxsvr /tmp]$

To make your customized shell prompt persist betweens logins, add the

PS1 value to your personal initialization files. Personal initialization files

are commonly referred to as "dot files" since they begin with a dot or

period.

JASON CANNON

144

$ echo 'export PS1="[\u@\h \w]\$ "' >>

~/.bash_profile

Creating Aliases

If you find yourself typing the same command over and over again, you

can create a shortcut for it called an alias. An alias can be thought of as

a text expander. Creating aliases for commands that are really long is

also a common practice. For example, if you type ls -l frequently,

you may want to abbreviate it to ll. As a matter of fact, this alias

often comes predefined on many Linux distributions.

alias [name[=value]] - List or create aliases. If no arguments are

provided the current list of aliases is displayed. Use name=value to

create a new alias.

$ ls -l

total 4

-rw-r--r-- 1 bob bob 221 Nov 13 11:30 file.txt

$ alias ll='ls -l'

$ ll

total 4

-rw-r--r-- 1 bob bob 221 Nov 13 11:30 file.txt

$ alias

alias egrep='egrep --color=auto'

alias fgrep='fgrep --color=auto'

alias grep='grep --color=auto'

alias l='ls -CF'

alias la='ls -A'

alias ll='ls -l'

alias ls='ls --color=auto'

$

You can even use aliases to fix common typing errors. If you find

yourself typing grpe when you intend to type grep, create an alias.

$ alias grpe='grep'

Aliases can be created to make your work environment similar to that of

LEARN LINUX IN 5 DAYS

145

another platform. For instance, in Windows cls clears the screen, but

in Linux the equivalent command is clear. If you are coming from an

HP-UX background you are most likely familiar with the command bdf

which displays disk usage. On Linux a very similar command is df. You

could create these shortcuts to help you feel more at home.

$ alias cls='clear'

$ alias bdf='df'

Note that if you were to log out and log back in, your aliases would be

lost. To make them persist between sessions add them to one of your

personal initialization files (dot files) like .bash_profile.

The downside to creating several aliases is that when you are on a

system that does not have your aliases you might feel lost. If you want

to be able to work effectively on any system that you have access to,

keep your alias usage to a minimum. Another way to handle this

situation is to copy your configuration files to each system that you

work on.

Interactive vs Non-interactive Sessions

The shell behaves in slightly different ways when you log on

interactively versus when you just connect to run a single command.

Here is an example to better illustrate the difference between

interactive and non-interactive shells.

Interactive:

mac:~ bob$ ssh linuxsvr

Last login: Thu Nov 7 01:26:37 UTC 2013

Welcome to Ubuntu 12.04.3 LTS

 * Documentation: https://help.ubuntu.com/

 System info as of Nov 14 01:26:52 UTC 2013

 System load: 0.42

JASON CANNON

146

 Usage of /: 3.1% of 40GB

 Memory usage: 32%

 Swap usage: 0%

 Processes: 89

 Users logged in: 0

 IP address for eth0: 10.0.0.7

bob@linuxsvr:~$ uptime

 11:49:16 up 97 days, 2:59, 5 users, load average:

0.15, 0.25, 0.31

bob@linuxsvr:~$ ll

-rw-r--r-- 1 bob bob 221 Nov 13 11:30 file.txt

bob@linuxsvr:~$ exit

logout

Connection to 10.0.0.7 closed.

mac:~ bob$

Non interactive:

mac:~ bob$ ssh linuxsvr uptime

 11:49:16 up 97 days, 2:59, 5 users, load average:

0.15, 0.25, 0.31

mac:~ bob$ ssh linuxsvr ll

bash: ll: command not found

mac:~ bob$

The contents of .profile or .bash_profile are only executed for

interactive sessions. If you are not aware of this subtle difference it may

leave you scratching your head as to why something works perfectly

when you log in and type a command versus when you just ssh in to run

that same command. For example, if you define an alias for ll in

~/.bash_profile it will work during an interactive session but it

will not be available during a non-interactive session.

You can save yourself some hassle by making your interactive and non-

interactive sessions behave the same. To do this, configure

.bash_profile to reference .bashrc and put all of your

configuration in .bashrc. You can read in the contents of another file

LEARN LINUX IN 5 DAYS

147

by using the source command or dot operator.

source filename - Read and execute commands from filename and

return. Any variables created or modified in filename will remain

available after the script completes.

. filename - Same as source filename.

$ cat .bash_profile

Put our settings in .bashrc so we have the same

environment for login and non-login shells.

if [-f ~/.bashrc]; then

 source ~/.bashrc

fi

$ cat .bashrc

use a vi-style line editing interface

set -o vi

Set the prompt.

PS1="[\u@\h \w]\$ "

export PS1

Set the PATH.

PATH=$PATH:~/bin

export PATH

Aliases

alias grpe='grep'

alias ll='ls -l'

alias utc='TZ=UTC date'

alias vi='vim'

Now the aliases you have defined are available during interactive and

non-interactive sessions. Here is how the sessions behave after this

change.

JASON CANNON

148

Interactive:

mac:~ bob$ ssh linuxsvr

Last login: Thu Nov 7 01:26:37 UTC 2013

Welcome to Ubuntu 12.04.3 LTS

 * Documentation: https://help.ubuntu.com/

 System info as of Nov 14 01:26:52 UTC 2013

 System load: 0.42

 Usage of /: 3.1% of 40GB

 Memory usage: 32%

 Swap usage: 0%

 Processes: 89

 Users logged in: 0

 IP address for eth0: 10.0.0.7

bob@linuxsvr:~$ ll

-rw-r--r-- 1 bob bob 221 Nov 13 11:30 file.txt

bob@linuxsvr:~$ exit

logout

Connection to 10.0.0.7 closed.

mac:~ bob$

Non interactive:

mac:~ bob$ ssh linuxsvr ll

-rw-r--r-- 1 bob bob 221 Nov 13 11:30 file.txt

mac:~ bob$

Comments

In the above examples you might have noticed the octothorpe (#)

followed by some very human like text in the ~/.bash_profile and

~/.bashrc files. Any text that follows an octothorpe is ignored by the

shell. This is a very common pattern that not only works for shells, but

also for several computer programming languages. This construct allows

comments and annotations to be used without effecting the execution

LEARN LINUX IN 5 DAYS

149

of a program or script.

- Octothorpe. Also known as a hash, square, pound sign, or number

sign. This symbol precedes comments.

$ # This does nothing.

$ This does something.

This: command not found

$ alias # Show my aliases.

alias egrep='egrep --color=auto'

alias fgrep='fgrep --color=auto'

alias grep='grep --color=auto'

alias l='ls -CF'

alias la='ls -A'

alias ll='ls -l'

alias ls='ls --color=auto'

$

Shell History

The shell keeps a record of the commands you have previously

executed. Bash keeps its history in memory for the current session and

in the ~/.bash_history file so that it can be recalled during future

sessions. Other shells may use ~/.history, ~/.zsh_history, or

other similarly named files. Having access to your shell history is

extremely useful because it allows you to quickly repeat commands.

This can save you time, save keystrokes, prevent you from making

mistakes by running a previously known good command, and generally

speed up your work flow.

history - Display a list of commands in the shell history.

!N - Repeat command line number N.

!! - Repeat the previous command line.

!string - Repeat the most recent command starting with "string."

JASON CANNON

150

$ history

1 ls

2 diff secret secret.bak

3 history

$!1

ls

PerformanceReviews tpsreports

$ echo $SHELL

/bin/bash

$!!

echo $SHELL

/bin/bash

$!d

diff secret secret.bak

3c3

< pass: Abee!

> pass: bee

$

With the exclamation mark history expansion syntax you can rerun a

command by number. In the above example the first command in the

history was executed with !1. If you want to execute the second

command you would execute !2. Another convenient shortcut is !-N

which means execute the Nth previous command. If you want to

execute the second to last command type !-2. Since !! repeats the

most recent command, it is the same as !-1.

$ history

1 ls

2 diff secret secret.bak

3 history

$!-2

diff secret secret.bak

3c3

< pass: Abee!

> pass: bee

$

LEARN LINUX IN 5 DAYS

151

By default bash retains 500 commands in your shell history. This is

controlled by the HISTSIZE environment variable. If you want to

increase this number add export HISTSIZE=1000 or something

similar to your personal initialization files.

Ctrl-r - Reverse search. Search for commands in your shell history.

You can search for commands in your history. For example, if you have

the command find /var/tmp -type f in your shell history you

could find it by typing Ctrl-r fi Enter. Ctrl-r initiates the

reverse search and displays the search prompt, fi is the search string,

and Enter executes the command that was found. You do not have to

search for the start of the string. You could have very well searched for

"var", "tmp", or "type."

$ find /var/tmp -type f

/var/tmp/file.txt

(reverse-i-search)`fi': find /var/tmp -type f

/var/tmp/file.txt

Tab Completion

Another way to increase your efficiency at the shell is by using tab

completion. After you start typing a command you can hit the Tab key

to invoke tab completion. Tab attempts to automatically complete

partially typed commands. If there are multiple commands that begin

with the string that precedes Tab, those commands will be displayed.

You can continue to type and press Tab again. When there is only one

possibility remaining, pressing the Tab key will complete the command.

Tab - Autocompletes commands and filenames.

JASON CANNON

152

$ # Typing who[Tab][Tab] results in:

$ who

who whoami

$ # Typing whoa[Tab][Enter] results in:

$ whoami

bob

$

Tab completion not only works on commands, but it also works on files

and directories. If you have files that start with a common prefix, Tab

will expand the common component. For example, if you have two files

named file1.txt and file2.txt, typing cat f Tab will expand

the command line to cat file. You can then continue typing or press

Tab twice to list the possible expansions. Typing cat f Tab 2 Tab

will expand to cat file2.txt. After you experiment with tab

completion it will soon become second nature.

$ # Typing cat f[Tab] results in:

$ cat file

$ # Typing: cat f[Tab][Tab][Tab] results in:

$ cat file

file1.txt file2.txt

$ # Typing cat f[Tab] 2[Tab][Enter] results in:

$ cat file2.txt

This is file2!!!

$

Shell Command Line Editing

From time to time you will want to change something on your current

command line. Maybe you noticed a spelling mistake at the front of the

line or need to add an additional option to the current command. You

may also find yourself wanting to recall a command from your shell

history and modify it slightly to fit the current situation. Command line

editing makes these types of activities possible.

Shells such as bash, ksh, tcsh, and zsh provide two command line editing

LEARN LINUX IN 5 DAYS

153

modes. They are emacs, which is typically the default mode, and vi.

Depending on the shell you can change editing modes by using the set

or bindkey command. If you want to ensure your preferred mode is

set upon login, add one of the two commands to your personal

initialization files.

Shell Emacs Mode Vi Mode Default Mode

bash set -o emacs set -o vi emacs

ksh set -o emacs set -o vi none

tcsh bindkey -e bindkey -v emacs

zsh bindkey -e bindkey -v emacs

zsh set -o emacs set -o vi emacs

Emacs Mode

As you would expect, in emacs command line editing mode you can use

the key bindings found in the emacs editor. For example, to move to the

beginning of the command line type Ctrl-a. To recall the previous

command type Ctrl-p.

Esc Esc - Escape completion. Similar to tab completion.

Ctrl-b - Move cursor to the left (back)

Ctrl-f - Move cursor to the right (forward)

Ctrl-p - Up (Previous command line)

Ctrl-n - Down (Next command line)

JASON CANNON

154

Ctrl-e - Move to the end of the line

Ctrl-a - Move to the beginning of the line

Ctrl-x Ctrl-e - Edit the current command line in the editor

defined by the $EDITOR environment variable.

See the section in this book on the emacs editor for more key bindings.

Vi Mode

When you are using vi command line editing mode you start in insert

mode so you can quickly type commands. To enter command mode,

press Esc. To move to the previous command, for example, type Esc

k. To resume editing enter insert mode by pressing i, I, a, or A.

Esc - Enter command mode.

Key bindings in command mode:

\ - Vi style file completion. Similar to tab completion.

h - Move cursor left

k - Up (Previous command line)

j - Down (Next command line)

l - Move cursor right

$ - Move to the end of the line

^ - Move to the beginning of the line

i - Enter insert mode.

a - Enter insert mode, append text at current location.

LEARN LINUX IN 5 DAYS

155

A - Enter insert mode, append text at end of line.

I - Enter insert edit mode, prepend text to start of line.

v - Edit the current command line in the editor defined by the $EDITOR

environment variable.

See the section in this book on the vi editor for more key bindings.

Dealing with Long Shell Commands

The backslash (\) is the line continuation character. You have learned

how to use the backslash to escape special characters like spaces.

However, when a backslash is placed at the end of a line it is used as a

line continuation character. This allows you to create command lines

that are displayed as multiple lines but are executed as a single

command line by the shell. You can use line continuation to make

commands more readable and easier to understand.

$ echo "one two three"

one two three

$ echo "one \

> two \

> three"

one two three

$ echo "onetwothree"

onetwothree

$ echo "one\

> two\

> three"

onetwothree

$

Notice the greater-than symbol (>) in the above example. It is the

secondary prompt string and can be customized by changing the PS2

environment variable. You learned previously how to change the

primary prompt string with PS1 in the “Customizing the Prompt” section

../Documents/ebooks-biz/linux-for-beginners/linux-for-beginners-published.html#vi

JASON CANNON

156

of this book.

$ PS2="line continued: "

$ echo "one \

line continued: two \

line continued: three"

one two three

$

Environment Variables

You have already been introduced to environment variables and have

put them to good use. To recap, an environment variable is a storage

location that has a name and a value. They often effect the way

programs behave. For example, you learned how to inform various

programs about your preferred editor by defining the $EDITOR

environment variable.

Common Environment Variables

Variable Description

EDITOR The program to run to perform edits.

HOME The Home directory of the user.

LOGNAME The login name of the user.

MAIL The location of the user's local inbox.

OLDPWD The previous working directory.

PATH
A colon separated list of directories to search for

commands.

PAGER This program may be called to view a file.

LEARN LINUX IN 5 DAYS

157

Variable Description

PS1 The primary prompt string.

PWD The present working directory.

USER The username of the user.

Viewing Environment Variables

If you know the name of the environment variable that you want to

examine, you can run echo $VARIABLE_NAME or printenv

VARIABLE_NAME. If you want to examine all the environment

variables that are set, use the env or printenv commands.

printenv - Print all or part of environment.

$ printenv HOME

/home/bob

$ echo $HOME

/home/bob

$ printenv

TERM=xterm-256color

SHELL=/bin/bash

USER=bob

PATH=/usr/local/bin:/usr/bin:/bin

MAIL=/var/mail/bob

PWD=/home/bob

LANG=en_US.UTF-8

HOME=/home/bob

LOGNAME=bob

$ env

TERM=xterm-256color

SHELL=/bin/bash

USER=bob

PATH=/usr/local/bin:/usr/bin:/bin

MAIL=/var/mail/bob

JASON CANNON

158

PWD=/home/bob

LANG=en_US.UTF-8

HOME=/home/bob

LOGNAME=bob

$

Exporting Environment Variables

When a process is started it inherits the exported environment variables

of the process that spawned it. A variable that is set or changed only

effects the current running process unless it is exported. The variables

that are not exported are called local variables. The export command

allows variables to be used by subsequently executed commands. Here

is an example.

$ echo $PAGER

$ PAGER=less

$ echo $PAGER

less

$ bash

$ echo $PAGER

$ exit

exit

$ export PAGER=less

$ bash

$ echo $PAGER

less

$ exit

exit

$

In the above example PAGER was defined in the current environment.

When you start a child process it inherits all the environment variables

that were exported in your current environment. Since PAGER was not

exported it was not set in the spawned bash shell. When you exported

PAGER you saw that it was indeed available in the child process.

LEARN LINUX IN 5 DAYS

159

Removing Variables from the Environment

You can use unset to remove or delete an environment variable.

$ echo $PAGER

less

$ unset PAGER

$ echo $PAGER

$

Deep Dive

 Bash it - A framework for managing your bash configuration.

https://github.com/revans/bash-it

 Command Line Completion - Tab completion explained.

http://en.wikipedia.org/wiki/Command-line_completion

 Configuration Files for Shell - A list of files used to configure

shell environments.

http://en.wikipedia.org/wiki/Unix_shell#Configuration_files_for

_shells

 Dotfiles.org - A place to upload, download, and share your

dotfiles.

http://dotfiles.org/

 Dotfiles.github.io - A guide to dotfiles on github.com.

http://dotfiles.github.io/

 Oh my ZSH - A community-driven framework for managing your

zsh configuration.

https://github.com/robbyrussell/oh-my-zsh

https://github.com/revans/bash-it
http://en.wikipedia.org/wiki/Command-line_completion
http://en.wikipedia.org/wiki/Unix_shell%23Configuration_files_for_shells
http://en.wikipedia.org/wiki/Unix_shell%23Configuration_files_for_shells
http://dotfiles.org/
http://dotfiles.github.io/
https://github.com/robbyrussell/oh-my-zsh

JASON CANNON

160

 Shells

 Bourne Shell

https://en.wikipedia.org/wiki/Bourne_shell

 Bash

https://www.gnu.org/software/bash/

 C Shell

https://en.wikipedia.org/wiki/C_shell

 Korn Shell

http://www.kornshell.com/

 tcsh

http://www.tcsh.org/

 Z Shell

http://www.zsh.org/

 Using Bash History Interactively - Official Bash history

documentation.

http://www.gnu.org/software/bash/manual/bashref.html#Usin

g-History-Interactively

 Unix Shell - An article on the shell user interface.

https://en.wikipedia.org/wiki/Unix_shell

https://en.wikipedia.org/wiki/Bourne_shell
https://www.gnu.org/software/bash/
https://en.wikipedia.org/wiki/C_shell
http://www.kornshell.com/
http://www.tcsh.org/
http://www.zsh.org/
http://www.gnu.org/software/bash/manual/bashref.html%23Using-History-Interactively
http://www.gnu.org/software/bash/manual/bashref.html%23Using-History-Interactively
https://en.wikipedia.org/wiki/Unix_shell

161

DAY 5

JASON CANNON

162

PROCESSES AND JOB CONTROL

Listing Processes and Displaying

Information

To display the currently running processes use the ps command. If no

options are specified, ps displays the processes associated with your

current session. To see every process including ones that are not owned

by you, use ps -e. To see processes running by a specific user, use ps

-u username.

ps - Display process status.

Common ps options:

-e - Everything, all processes.

LEARN LINUX IN 5 DAYS

163

-f - Full format listing.

-u username - Display processes running as username.

-p pid - Display process information for pid. A PID is a process ID.

Common ps commands:

ps -e - Display all processes.

ps -ef - Display all processes.

ps -eH - Display a process tree.

ps -e --forest - Display a process tree.

ps -u username - Display processes running as username.

$ ps

 PID TTY TIME CMD

19511 pts/2 00:00:00 bash

19554 pts/2 00:00:00 ps

$ ps -p 19511

 PID TTY TIME CMD

19511 pts/2 00:00:00 bash

$ ps -f

UID PID PPID C STIME TTY TIME CMD

bob 19511 19509 0 16:50 pts/2 00:00:00 -bash

bob 19556 19511 0 16:50 pts/2 00:00:00 ps -f

$ ps -e | head

 PID TTY TIME CMD

 1 ? 00:00:02 init

 2 ? 00:00:00 kthreadd

 3 ? 00:00:19 ksoftirqd/0

 5 ? 00:00:00 kworker/0:0H

 7 ? 00:00:00 migration/0

 8 ? 00:00:00 rcu_bh

 9 ? 00:00:17 rcu_sched

 10 ? 00:00:12 watchdog/0

 11 ? 00:00:00 khelper

$ ps -ef | head

UID PID PPID C STIME TTY TIME CMD

JASON CANNON

164

root 1 0 0 Dec27 ? 00:00:02 /sbin/init

root 2 0 0 Dec27 ? 00:00:00 [kthreadd]

root 3 2 0 Dec27 ? 00:00:19 [ksoftirqd/0]

root 5 2 0 Dec27 ? 00:00:00 [kworker/0:0H]

root 7 2 0 Dec27 ? 00:00:00 [migration/0]

root 8 2 0 Dec27 ? 00:00:00 [rcu_bh]

root 9 2 0 Dec27 ? 00:00:17 [rcu_sched]

root 10 2 0 Dec27 ? 00:00:12 [watchdog/0]

root 11 2 0 Dec27 ? 00:00:00 [khelper]

$ ps -fu www-data

UID PID PPID C STIME TTY TIME CMD

www-data 941 938 0 Dec27 ? 00:00:00

/usr/sbin/apache2 -k start

www-data 942 938 0 Dec27 ? 00:00:00

/usr/sbin/apache2 -k start

www-data 943 938 0 Dec27 ? 00:00:00

/usr/sbin/apache2 -k start

Here are other commands that allow you to view running processes.

pstree - Display running processes in a tree format.

htop - Interactive process viewer. This command is less common than

top and may not be available on the system.

top - Interactive process viewer.

Running Processes in the Foreground and

Background

Up until this point all the commands you have been executing have

been running in the foreground. When a command, process, or program

is running in the foreground the shell prompt will not be displayed until

that process exits. For long running programs it can be convenient to

send them to the background. Processes that are backgrounded still

execute and perform their task, however they do not block you from

entering further commands at the shell prompt. To background a

process, place an ampersand (&) at the end of the command.

LEARN LINUX IN 5 DAYS

165

command & - Start command in the background.

Ctrl-c - Kill the foreground process.

Ctrl-z - Suspend the foreground process.

bg [%num] - Background a suspended process.

fg [%num] - Foreground a background process.

kill [%num] - Kill a process by job number or PID.

jobs [%num] - List jobs.

$./long-running-program &

[1] 22686

$ ps -p 22686

 PID TTY TIME CMD

22686 pts/1 00:00:00 long-running-pr

$ jobs

[1]+ Running ./long-running-program &

$ fg

./long-running-program

When a command is backgrounded two numbers are displayed. The

number in brackets is the job number and can be referred by preceding

it with the percent sign. The second number is the PID. Here is what it

looks like to start multiple processes in the background.

$./long-running-program &

[1] 22703

$./long-running-program &

[2] 22705

$./long-running-program &

[3] 22707

$./long-running-program &

[4] 22709

JASON CANNON

166

$ jobs

[1] Done ./long-running-program

[2] Done ./long-running-program

[3]- Running ./long-running-program &

[4]+ Running ./long-running-program &

The plus sign (+) in the jobs output represents the current job while

the minus sign (-) represents the previous job. The current job is

considered to be the last job that was stopped while it was in the

foreground or the last job started in the background. The current job

can be referred to by %% or %+. If no job information is supplied to the

fg or bg commands, the current job is operated upon. The previous job

can be referred to by %-.

You will notice that jobs number 1 and 2 are reported as being done.

The shell does not interrupt your current command line, but will report

job statuses right before a new prompt is displayed. For example, if you

start a program in the background a prompt is returned. The shell will

not report the status of the job until a new prompt is displayed. You can

request a new prompt be displayed by simply hitting Enter.

To bring a job back to the foreground, type the name of the job or use

the fg command. To foreground the current job execute %%, %+, fg,

fg %%, fg %+, or fg %num. To foreground job number 3, execute %3

or fg %3.

$ jobs

[3]- Running ./long-running-program &

[4]+ Running ./long-running-program &

$ fg %3

./long-running-program

To pause or suspend a job that is running in the foreground, type

Ctrl-z. Once a job is suspended it can be resumed in the foreground

or background. To background a suspended job type the name of the

job followed by an ampersand or use bg followed by the job name.

$ jobs

LEARN LINUX IN 5 DAYS

167

[1] Running ./long-running-program &

[2]- Running ./long-running-program &

[3]+ Running ./another-program &

$ fg

./another-program

^Z

[3]+ Stopped ./another-program

$ jobs

[1] Running ./long-running-program &

[2]- Running ./long-running-program &

[3]+ Stopped ./another-program

$ bg %3

[3]+ ./another-program &

$ jobs

[1] Running ./long-running-program &

[2]- Running ./long-running-program &

[3]+ Running ./another-program &

You can stop or kill a background job using the kill command. For

example, to kill job number 1 execute kill %1. To kill a job that is

running in the foreground, type Ctrl-c.

$ jobs

[1] Running ./long-running-program &

[2]- Running ./long-running-program &

[3]+ Running ./another-program &

$ kill %1

[1] Terminated ./long-running-program

$ jobs

[2]- Running ./long-running-program &

[3]+ Running ./another-program &

$ fg %2

./long-running-program

^C

$ jobs

[3]+ Running ./another-program &

$

JASON CANNON

168

Killing Processes

Ctrl-c - Kills the foreground process.

kill [signal] pid - Send a signal to a process.

kill -l - Display a list of signals.

The default signal used by kill is termination. You will see this signal

referred to as SIGTERM or TERM for short. Signals have numbers that

correspond to their names. The default TERM signal is number 15. So

running kill pid, kill -15 pid, and kill -TERM pid are all

equivalent. If a process does not terminate when you send it the TERM

signal, use the KILL signal which is number 9.

$ ps | grep hard-to-stop

27398 pts/1 00:00:00 hard-to-stop

$ kill 27398

$ ps | grep hard-to-stop

27398 pts/1 00:00:00 hard-to-stop

$ kill -9 27398

$ ps | grep hard-to-stop

$

Deep Dive

 Bash Documentation on Job Control

http://gnu.org/software/bash/manual/html_node/Job-

Control.html

http://gnu.org/software/bash/manual/html_node/Job-Control.html
http://gnu.org/software/bash/manual/html_node/Job-Control.html

169

SCHEDULING REPEATED JOBS WITH CRON

If you need to repeat a task on a schedule, you can use the cron service.

Every minute the cron service checks to see if there are any scheduled

jobs to run and if so runs them. Cron jobs are often used to automate a

process or perform routine maintenance. You can schedule cron jobs by

using the crontab command.

cron - A time based job scheduling service. This service is typically

started when the system boots.

crontab - A program to create, read, update, and delete your job

schedules.

A crontab (cron table) is a configuration file that specifies when

commands are to be executed by cron. Each line in a crontab represents

a job and contains two pieces of information: 1) when to run and 2)

what to run. The time specification consists of five fields. They are

minutes, hour, day of the month, month, and day of the week. After the

time specification you provide the command to be executed.

JASON CANNON

170

Crontab Format

* * * * * command

| | | | |

| | | | +-- Day of the Week (0-6)

| | | +---- Month of the Year (1-12)

| | +------ Day of the Month (1-31)

| +-------- Hour (0-23)

+---------- Minute (0-59)

The command will only be executed when all of the time specification

fields match the current date and time. You can specify that a command

be run only once, but this is not the typical use case for cron. Typically,

one or more of the time specification fields will contain an asterisk (*)

which matches any time or date for that field. Here is an example

crontab.

Run every Monday at 07:00.

0 7 * * 1 /opt/sales/bin/weekly-report

Here is a graphical representation of the above crontab entry.

0 7 * * 1 /opt/sales/bin/weekly-report

| | | | |

| | | | +-- Day of the Week (0-6)

| | | +---- Month of the Year (1-12)

| | +------ Day of the Month (1-31)

| +-------- Hour (0-23)

+---------- Minute (0-59)

This job will run only when the minute is 0, the hour is 7, and the day of

the week is 1. In the day of the week field 0 represents Sunday, 1

Monday, etc. This job will run on any day and during any month since

the asterisk was used for those two fields.

If any output is generated by the command it is mailed to you. You can

check your local mail with the mail command. If you would prefer not

to get email you can redirect the output of the command as in this

LEARN LINUX IN 5 DAYS

171

example.

Run at 02:00 every day and send output to a log.

0 2 * * * /opt/acme/bin/backup > /tmp/backup.log 2>&1

You can provide multiple values for each of the fields. If you would like

to run a command every half-hour, you could do this.

Run every 30 minutes.

0,30 * * * * /opt/acme/bin/half-hour-check

Another way to do the same thing.

*/2 * * * * /opt/acme/bin/half-hour-check

Instead of using 0,30 for the minute field you could have used */2.

You can even use ranges with a dash. If you want to run a job every

minute for the first four minutes of the hour you can use this time

specification: 0-4 * * * * command.

There are several implementations of the cron scheduler and some

allow you to use shortcuts and keywords in your crontabs. Common

keywords have been provided below, but refer to the documentation

for cron on your system to ensure these will work.

JASON CANNON

172

Keyword Description Equivalent

@yearly
Run once a year at midnight in the

morning of January 1
0 0 1 1 *

@annually Same as @yearly 0 0 1 1 *

@monthly
Run once a month at midnight in the

morning of the first day of the month
0 0 1 * *

@weekly
Run once a week at midnight in the

morning of Sunday
0 0 * * 0

@daily Run once a day at midnight 0 0 * * *

@midnight Same as @daily 0 0 * * *

@hourly
Run once an hour at the beginning of

the hour
0 * * * *

@reboot Run at startup N/A

Using the Crontab Command

Use the crontab command to manipulate cron jobs.

crontab file - Install a new crontab from file.

crontab -l - List your cron jobs.

crontab -e - Edit your cron jobs.

crontab -r - Remove all of your cron jobs.

LEARN LINUX IN 5 DAYS

173

$ crontab -l

no crontab for bob

$ cat my-cron

Run every Monday at 07:00.

0 7 * * 1 /opt/sales/bin/weekly-report

$ crontab my-cron

$ crontab -l

Run every Monday at 07:00.

0 7 * * 1 /opt/sales/bin/weekly-report

$ crontab -e

$EDITOR is invoked.

$ crontab -r

$ crontab -l

no crontab for bob

$

Deep Dive

 CronWFT - Decodes crontab lines. Print out human readable

output.

http://cronwtf.github.io/

 CronMaker - A utility which helps you to build cron expressions.

http://www.cronmaker.com/

http://cronwtf.github.io/
http://www.cronmaker.com/

174

SWITCHING USERS AND RUNNING COMMANDS AS
OTHERS

su

One way to start a session as another user on the system is to use the

su command. If no arguments are supplied to su, it assumes you are

trying to become the superuser. Executing su is the same as executing

su root. Your current environment is passed to the new shell unless

you specify a hyphen (-). In that case, su creates an environment like

you would expect to see had you logged in as that user.

su [username] - Change user ID or become superuser

Common su options:

- - A hyphen is used to provide an environment similar to what the user

would expect had the user logged in directly.

-c command - Specify a command to be executed. If the command is

more than one word in length, it needs to be quoted.

LEARN LINUX IN 5 DAYS

175

bob@linuxsvr:~$ export TEST=1

bob@linuxsvr:~$ su oracle

Password:

oracle@linuxsvr:/home/bob$ echo $TEST

1

oracle@linuxsvr:/home/bob$ pwd

/home/bob

oracle@linuxsvr:/home/bob$ exit

exit

bob@linuxsvr:~$ su - oracle

Password:

oracle@linuxsvr:~$ echo $TEST

oracle@linuxsvr:~$ pwd

/home/oracle

oracle@linuxsvr:~$ exit

bob@linuxsvr:~$ su -c 'echo $ORACLE_HOME' oracle

Password:

bob@linuxsvr:~$ su -c 'echo $ORACLE_HOME' - oracle

Password:

/u01/app/oracle/product/current

bob@linuxsvr:~$

If you want to know what user you are working as, run the whoami

command.

whoami - Displays the effective username.

$ whoami

bob

$ su oracle

Password:

$ whoami

oracle

$

JASON CANNON

176

Sudo - Super User Do

Another way to switch users or execute commands as others is to use

the sudo command. Sudo allows you to run programs with the security

privileges of another user. Like su, if no username is specified it

assumes you are trying to run commands as the superuser. This is why

sudo is referred to as super user do. It is commonly used to install, start,

and stop applications that require superuser privileges.

sudo - Execute a command as another user, typically the superuser.

One advantage of using sudo over the su command is that you do not

need to know the password of the other user. This can eliminate the

issues that arise from using shared passwords and generic accounts.

When you execute the sudo command you are prompted for your

password. If the sudo configuration permits access, the command is

executed. The sudo configuration is typically controlled by the system

administrator and requires root access to change.

Using Sudo

Here are the common ways to use the sudo command.

sudo -l - List available commands.

sudo command - Run command as the superuser.

sudo -u root command - Same as sudo command.

sudo -u user command - Run command as user.

sudo su - Switch to the superuser account.

sudo su - - Switch to the superuser account with an environment

like you would expect to see had you logged in as that user.

LEARN LINUX IN 5 DAYS

177

sudo su - username - Switch to the username account with an

environment like you would expect to see had you logged in as that

user.

$ sudo -l

User bob may run the following commands on this host:

(root) NOPASSWD: /etc/init.d/apache2

(fred) NOPASSWD: /opt/fredApp/bin/start

(fred) NOPASSWD: /opt/fredApp/bin/stop

(root) /bin/su - oracle

$ sudo /etc/init.d/apache2 start

 * Starting web server apache2

$ sudo -u fred /opt/fredApp/bin/start

Fred's app started as user fred.

$ sudo su - oracle

[sudo] password for bob:

oracle@linuxsvr:~$ whoami

oracle

oracle@linuxsvr:~$ exit

$ whoami

bob

$

The output of sudo -l displays what commands can be executed with

sudo and under which account. In the above example, sudo will not

prompt for a password for the commands preceded with NOPASSWD.

This type of configuration may be required to automate jobs via cron

that require escalated privileges.

JASON CANNON

178

Deep Dive

 The su command

http://www.linfo.org/su.html

 Sudo - The official sudo website.

http://www.sudo.ws/sudo/

 Ubuntu Sudo Documentation

http://help.ubuntu.com/community/RootSudo

http://www.linfo.org/su.html
http://www.sudo.ws/sudo/
http://help.ubuntu.com/community/RootSudo

179

INSTALLING SOFTWARE

Typically when you install software on a Linux system you do so with a

package. A package is a collection of files that make up an application.

Additionally, a package contains data about the application as well as

any steps required to successfully install and remove that application.

The data, or metadata, that is contained within a package can include

information such as the description of the application, the version of the

application, and a list of other packages that it depends on. In order to

install or remove a package you need to use superuser privileges.

A package manager is used to install, upgrade, and remove packages.

Any additional software that is required for a package to function

properly is known as a dependency. The package manager uses a

package's metadata to automatically install the dependencies. Package

managers keep track of what files belong to what packages, what

packages are installed, and what versions of those packages are

installed.

JASON CANNON

180

Installing Software on CentOS, Fedora, and

RedHat Distributions

The yum command line utility is a package management program for

Linux distributions that use the RPM package manager. CentOS, Fedora,

Oracle Linux, RedHat Enterprise Linux, and Scientific Linux are RPM

based distributions on which you can use yum.

yum search search-string - Search for search-string.

yum install [-y] package - Install package. Use the -y option

to automatically answer yes to yum's questions.

yum remove package - Remove/uninstall package.

yum info [package] - Display information about package.

To search for software to install, use yum search search-

string.

$ yum search inkscape

Loaded plugins: refresh-packagekit, security

============= N/S Matched: inkscape =============

inkscape-docs.i686 : Documentation for Inkscape

inkscape.i686 : Vector-based drawing program using

SVG

inkscape-view.i686 : Viewing program for SVG files

 Name and summary matches only, use "search all" for

everything.

$

To install software, use yum install package. Installing software

requires superuser privileges. This means you need to use sudo or

switch to the root account with the su command.

$ sudo yum install inkscape

[sudo] password for bob:

LEARN LINUX IN 5 DAYS

181

Loaded plugins: refresh-packagekit, security

Setting up Install Process

Resolving Dependencies

--> Running transaction check

---> Package inkscape.i686 0:0.47-6.el6 will be

installed

--> Processing Dependency: python for package:

...

Dependencies Resolved

===

 Package Arch Version Repository

Size

===

Installing:

 inkscape i686 0.47-6.el6 base 8.6 M

Installing for dependencies:

 ImageMagick i686 6.5.4.7-7.el6_5 updates 1.7 M

...

Transaction Summary

===

Install 21 Package(s)

Total download size: 21 M

Installed size: 97 M

Is this ok [y/N]: y

Downloading Packages:

(1/21): ImageMagick-6.5.4.7-7.el6_5.i686.rpm

...

Installed:

 inkscape.i686 0:0.47-6.el6

Dependency Installed:

 ImageMagick.i686 0:6.5.4.7-7.el6_5

...

Complete!

To uninstall a package, use yum remove. Removing software requires

superuser privileges.

$ sudo yum remove inkscape

Loaded plugins: refresh-packagekit, security

JASON CANNON

182

Setting up Remove Process

Resolving Dependencies

--> Running transaction check

---> Package inkscape.i686 0:0.47-6.el6 will be

erased

--> Finished Dependency Resolution

Dependencies Resolved

===

 Package Arch Version Repository Size

===

Removing:

 inkscape i686 0.47-6.el6 @base 37 M

Transaction Summary

===

Remove 1 Package(s)

Installed size: 37 M

Is this ok [y/N]: y

Downloading Packages:

Running rpm_check_debug

Running Transaction Test

Transaction Test Succeeded

Running Transaction

 Erasing : inkscape-0.47-6.el6.i686 1/1

 Verifying : inkscape-0.47-6.el6.i686 1/1

Removed:

 inkscape.i686 0:0.47-6.el6

Complete!

$

The rpm Command

In addition to the yum command, you can use the rpm command to

interact with the package manager.

LEARN LINUX IN 5 DAYS

183

rpm -qa - List all the installed packages.

rpm -qf /path/to/file - List the package that contains file.

rpm -ivh package.rpm - Install a package from the file named

package.rpm.

rpm -ql package - List all files that belong to package.

$ rpm -qa | sort | head

acl-2.2.49-6.el6.i686

acpid-1.0.10-2.1.el6.i686

aic94xx-firmware-30-2.el6.noarch

alsa-lib-1.0.22-3.el6.i686

alsa-plugins-pulseaudio-1.0.21-3.el6.i686

alsa-utils-1.0.22-5.el6.i686

anaconda-13.21.215-1.el6.centos.i686

anaconda-yum-plugins-1.0-5.1.el6.noarch

apache-tomcat-apis-0.1-1.el6.noarch

apr-1.3.9-5.el6_2.i686

$ rpm -qf /usr/bin/which

which-2.19-6.el6.i686

$ sudo rpm -ivh SpiderOak-5.0.3-1.i386.rpm

[sudo] password for bob:

Preparing... ####################### [100%]

 1:SpiderOak ####################### [100%]

$

Installing Software on Debian and Ubuntu

The Debian and Ubuntu distributions use a package manager called APT,

the Advanced Packaging Tool. APT is comprised of a few small utilities

with the two most commonly used ones being apt-cache and apt-

get.

apt-cache search search-string - Search for search-string.

apt-get install [-y] package - Install package. Use the -y

option to automatically answer yes to apt-get's questions.

JASON CANNON

184

apt-get remove package - Remove/uninstall package, leaving

behind configuration files.

apt-get purge package - Remove/uninstall package, deleting

configuration files.

apt-cache show package - Display information about package.

To search for software to install, use apt-cache search search-

string.

$ apt-cache search inkscape

create-resources - shared resources for use by

creative applications

inkscape - vector-based drawing program

python-scour - SVG scrubber and optimizer

fonts-opendin - Open DIN font

fonts-rufscript - handwriting-based font for Latin

characters

ink-generator - Inkscape extension to automatically

generate files from a template

lyx - document processor

robocut - Control program for Graphtec cutting

plotters

sozi - inkscape extension for creating animated

presentations

ttf-rufscript - handwriting-based font for Latin

characters (transitional dummy package)

$

To install software, use apt-get install package. Installing

software requires superuser privileges. This means you need to use

sudo or switch to the root account with the su command.

$ sudo apt-get install inkscape

Reading package lists... Done

Building dependency tree

Reading state information... Done

The following extra packages will be installed:

 aspell aspell-en cmap-adobe-japan1 dbus-x11

LEARN LINUX IN 5 DAYS

185

...

3 upgraded, 74 newly installed, 0 to remove and 96

not upgraded.

Need to get 62.7 MB of archives.

After this operation, 171 MB of additional disk space

will be used.

Do you want to continue [Y/n]? y

...

Setting up perlmagick (8:6.6.9.7-5ubuntu3.2) ...

Processing triggers for libc-bin ...

ldconfig deferred processing now taking place

$

To uninstall a package, use apt-get remove. Removing software

requires superuser privileges.

$ sudo apt-get remove inkscape

Reading package lists... Done

Building dependency tree

Reading state information... Done

The following packages will be REMOVED:

 inkscape

0 upgraded, 0 newly installed, 1 to remove and 96 not

upgraded.

After this operation, 64.9 MB disk space will be

freed.

Do you want to continue [Y/n]? y

(Reading database ... 69841 files and directories

currently installed.)

Removing inkscape ...

Processing triggers for man-db ...

Processing triggers for hicolor-icon-theme ...

$

The dpkg Command

In addition the apt utilities, you can use the dpkg command to

interact with the package manager.

dgpk -l - List all the installed packages.

JASON CANNON

186

dpkg -S /path/to/file - List the package that contains file.

dpkg -i package.deb - Install a package from the file named

package.deb.

dpkg -L package - List all files that belong to package.

$ dpkg –l | head

Desired=Unknown/Install/Remove/Purge/Hold

| Status=Not/Inst/Conf-files/Unpacked/halF-conf/Half-

inst/trig-aWait/Trig-pend

|/ Err?=(none)/Reinst-required (Status,Err:

uppercase=bad)

||/ Name Version

Description

+++-==================-============-=================

ii accountsservice 0.6.15-2ubuntu9.6 query

and manipulate user account information

ii acpid 1:2.0.10-1ubuntu3 Advanced

Configuration and Power Interface event daemon

ii adduser 3.113ubuntu2 add and

remove users and groups

ii apparmor 2.7.102-0ubuntu3.9 User-

space parser utility for AppArmor

ii apport 2.0.1-0ubuntu17.5

automatically generate crash reports for debugging

$ dpkg -S /usr/bin/which

debianutils: /usr/bin/which

$ sudo dpkg -i spideroak_5.1.3_i386.deb

[sudo] password for bob:

Selecting previously unselected package spideroak.

(Reading database ... 153942 files and directories

currently installed.)

Unpacking spideroak (from spideroak_5.1.3_i386.deb)

...

Setting up spideroak (1:5.1.3) ...

Processing triggers for man-db ...

Processing triggers for desktop-file-utils ...

Processing triggers for bamfdaemon ...

LEARN LINUX IN 5 DAYS

187

Rebuilding /usr/share/applications/bamf.index...

Processing triggers for gnome-menus ...

$

Free Video on Installing Linux Software

If you would like to see exactly what it's like to install software on a

Linux system, check out this video that I put together for you:

http://www.linuxtrainingacademy.com/installing/

http://www.linuxtrainingacademy.com/installing/

JASON CANNON

188

Deep Dive

 Managing Software with Yum

https://www.centos.org/docs/5/html/yum/

 AptGet Howto

https://help.ubuntu.com/community/AptGet/Howto

 Ubuntu - Installing Software

https://help.ubuntu.com/community/InstallingSoftware

 Installing Linux Software Video

http://www.linuxtrainingacademy.com/installing/

https://www.centos.org/docs/5/html/yum/
https://help.ubuntu.com/community/AptGet/Howto
https://help.ubuntu.com/community/InstallingSoftware
http://www.linuxtrainingacademy.com/installing/

189

THE END AND THE BEGINNING

Even though this is the end of this book, I sincerely hope that it is just

the beginning of your Linux journey. Linux has been growing steadily in

popularity since its release in 1991. You will find Linux running on

phones, laptops, servers, supercomputers, industrial equipment, and

even on medical devices. The possibilities for learning, exploring, and

growing are endless.

190

ABOUT THE AUTHOR

Jason Cannon started his career as a Unix and Linux System Engineer in
1999. Since that time he has utilized his Linux skills at companies such as
Xerox, UPS, Hewlett-Packard, and Amazon.com. Additionally, he has
acted as a technical consultant and independent contractor for small to
medium businesses.

Jason has professional experience with CentOS, RedHat Enterprise
Linux, SUSE Linux Enterprise Server, and Ubuntu. He has used several
Linux distributions on personal projects including Debian, Slackware,
CrunchBang, and others. In addition to Linux, Jason has experience
supporting proprietary Unix operating systems including AIX, HP-UX,
and Solaris.

He enjoys teaching others how to use and exploit the power of the Linux
operating system and teaches online video training courses at
http://www.LinuxTrainingAcademy.com.

Jason is also the author of Python Programming for Beginners and
Command Line Kung Fu: Bash Scripting Tricks, Linux Shell
ProgrammingTips, and Bash One-Liners

http://www.linuxtrainingacademy.com/

LEARN LINUX IN 5 DAYS

191

OTHER BOOKS BY THE AUTHOR

Bash Command Line Pro Tips
http://www.linuxtrainingacademy.com/bash-pro-tips

Command Line Kung Fu: Bash Scripting Tricks, Linux Shell Programming
Tips, and Bash One-liners
http://www.linuxtrainingacademy.com/command-line-kung-fu-book

High Availability for the LAMP Stack: Eliminate Single Points of Failure
and Increase Uptime for Your Linux, Apache, MySQL, and PHP Based
Web Applications
http://www.linuxtrainingacademy.com/ha-lamp-book

Python Programming for Beginners
http://www.linuxtrainingacademy.com/python-programming-for-
beginners

http://www.linuxtrainingacademy.com/bash-pro-tips
http://www.linuxtrainingacademy.com/command-line-kung-fu-book
http://www.linuxtrainingacademy.com/ha-lamp-book
http://www.linuxtrainingacademy.com/python-programming-for-beginners
http://www.linuxtrainingacademy.com/python-programming-for-beginners

JASON CANNON

192

ADDITIONAL RESOURCES INCLUDING EXCLUSIVE
DISCOUNTS FOR YOU

For even more resources, visit:

http://www.linuxtrainingacademy.com/resources

Books

Command Line Kung Fu
http://www.linuxtrainingacademy.com/command-line-kung-fu-book

Do you think you have to lock yourself in a basement reading cryptic
man pages for months on end in order to have ninja like command line
skills? In reality, if you had someone share their most powerful
command line tips, tricks, and patterns you’d save yourself a lot of time
and frustration. This book does just that.

http://www.linuxtrainingacademy.com/resources
http://www.linuxtrainingacademy.com/command-line-kung-fu-book

LEARN LINUX IN 5 DAYS

193

High Availability for the LAMP Stack
http://www.linuxtrainingacademy.com/ha-lamp-book

Eliminate Single Points of Failure and Increase Uptime for Your Linux,
Apache, MySQL, and PHP Based Web Applications

Python Programming for Beginners
http://www.linuxtrainingacademy.com/python-programming-for-beginners

If you are interested in learning how to program, or Python specifically,
this book is for you. In it you will learn how to install Python, which
version to choose, how to prepare your computer for a great
experience, and all the computer programming basics you’ll need to
know to start writing fully functional programs.

Scrum Essentials
http://www.linuxtrainingacademy.com/scrum-book

This book will provide every team member, manager, and executive
with a common understanding of Scrum, a shared vocabulary they can
use in applying it, and practical knowledge for deriving maximum value
from it. After reading Scrum Essentials you will know about scrum roles,
sprints, scrum artifacts, and much more.

Courses

High Availability for the LAMP Stack
http://www.linuxtrainingacademy.com/ha-lamp-stack

Learn how to setup a highly available LAMP stack (Linux, Apache,
MySQL, PHP). You'll learn about load balancing, clustering databases,
creating distributed file systems, and more.

http://www.linuxtrainingacademy.com/ha-lamp-book
http://www.linuxtrainingacademy.com/python-programming-for-beginners
http://www.linuxtrainingacademy.com/scrum-book
http://www.linuxtrainingacademy.com/ha-lamp-stack

JASON CANNON

194

Linux for Beginners
http://www.linuxtrainingacademy.com/lfb-udemy

This is the online video training course based on this book. This course
includes explanations as well as real-world examples on actual Linux
systems.

Learn Linux in 5 Days
http://www.linuxtrainingacademy.com/linux-in-5-days

Take just 45 minutes a day for the next 5 days and I will teach you
exactly what you need to know about the Linux operating system. You’ll
learn the most important concepts and commands, and I’ll even guide
you step-by-step through several practical and real-world examples.

Linux Alternatives to Windows Applications
http://www.linuxtrainingacademy.com/linux-alternatives

If you ever wanted to try Linux, but were afraid you wouldn’t be able to
use your favorite software, programs, or applications, take this course.

LPI Level 1 / Exam 101 Training
http://www.linuxtrainingacademy.com/lpi-course-1

This course provides interactive step-by-step videos that will help you
prepare for the LPIC-1 101 Exam. This exam is important to help you
prepare for the Linux+ and LPIC level 1 certification and this course
provides all the materials you need to pass the exam.

LPI Level 1 / Exam 102 Training
http://www.linuxtrainingacademy.com/lpi-course-2

This course provides interactive, step-by-step videos that will help you
prepare for the LPIC-1 102 Exam. This exam is important to help you
prepare for the Linux+ and LPIC level 1 certification and this course
provides all the materials you need to pass the exam.

http://www.linuxtrainingacademy.com/lfb-udemy
http://www.linuxtrainingacademy.com/linux-in-5-days
http://www.linuxtrainingacademy.com/linux-alternatives
http://www.linuxtrainingacademy.com/lpi-course-1
http://www.linuxtrainingacademy.com/lpi-course-2

LEARN LINUX IN 5 DAYS

195

Python for Beginners
http://www.linuxtrainingacademy.com/python-video-course

This comprehensive course covers the basics of Python as well as the
more advanced aspects such as debugging and handling files. Enroll in
this course to gain access to all 13 chapters of this Python for Beginners
course as well as labs and code files.

Cloud Hosting and VPS (Virtual Private Servers)

Digital Ocean
http://www.linuxtrainingacademy.com/digitalocean

Simple cloud hosting, built for developers. Deploy an SSD cloud server
in just 55 seconds. You can have your own server for as little as $5 a
month.

Web Hosting with SSH and Shell Access

Bluehost
http://www.linuxtrainingacademy.com/bluehost

99% of my websites are hosted on Bluehost. Why? Because it's
incredibly easy to use with 1-click automatic WordPress installation and
excellent customer service - via phone and via chat. I HIGHLY
RECOMMEND using Bluehost for your first site. Also, you can use the
same hosting account for multiple domains if you plan on creating more
websites. Visit http://www.linuxtrainingacademy.com/bluehost to get a
special discount off the regular price!

http://www.linuxtrainingacademy.com/python-video-course
http://www.linuxtrainingacademy.com/digitalocean
http://www.linuxtrainingacademy.com/bluehost

JASON CANNON

196

HostGator
http://www.linuxtrainingacademy.com/hostgator

If you want an alternative to Bluehost, check out HostGator. It comes
with a 99.9% uptime guarantee and includes a free site builder. They
provide customer support 24 hours a day, seven days a week and even
provide a 45 day money-back gaurantee..

http://www.linuxtrainingacademy.com/hostgator

197

APPENDICES

198

APPENDIX A:

ABBREVIATIONS AND ACRONYMS

ACL - access control list

APT - advanced packaging tool (apt)

ASCII - American Standard Code for Information Interchange

CentOS - Community ENTerprise Operating System

LEARN LINUX IN 5 DAYS

199

cd - Change directory

CLI - command line interface

crontab - cron table

dir - directory

distro - Distribution, a collection of user programs, software, and the

Linux kernel to create an operating environment.

FOSS - free open source software

FTP - file transfer protocol

GID - group identification

GB - gigabyte

GNU - GNU's Not UNIX. (See GNU.org)

GUI - graphical user interface

HP - Hewlett-Packard

IBM - International Business Machines

KB - kilobyte

I/O - input/output

LFS - Linux from scratch.

(See http://www.linuxfromscratch.org/)

LSB - Linux Standard Base

LUG - Linux user group

LVM - logical volume management

JASON CANNON

200

MB - megabyte

MBR - master boot record

NFS - network file system

NTP - network time protocol

OS - operating system

PID - process identification number

POSIX - portable operating system interface

pwd - present working directory

RHEL - RedHat Enterprise Linux

RHCE - Red Hat Certified Engineer

RPM - RedHat Package Manager

SAN - storage area network

SELinux - Security Enhanced Linux

SFTP - secure file transfer protocol or SSH file transfer protocol

SGID - set group ID

SLES - SuSE Linux Enterprise Server

SSH - secure shell

STDIN - Standard input

STDOUT - Standard output

STDERR - Standard error

LEARN LINUX IN 5 DAYS

201

su - superuser

sudo - superuser do

SUID - set user ID

symlink - symbolic link

tar - tape archive

TB - terabyte

TTY - teletype terminal

UID - user identification

VDI - virtual disk image

X - X window system

YUM - Yellowdog Updater, Modified (yum)

202

APPENDIX B: FAQ

Q: Where can I access all the links in this book?

The links covered in this book along with other supplemental material is

available at:

http://www.linuxtrainingacademy.com/lfb

Q: What is Linux?

Linux is an open-source operating system modelled after UNIX.

Q: What is the Linux kernel?

The Linux kernel handles the interactions between the software running

on the system and the hardware. To learn more, visit the official Linux

kernel website at http://www.kernel.org.

Q: Which Linux distribution should I use?

If your goal is to eventually become a Linux system administrator, focus

on CentOS or Ubuntu. CentOS is a Red Hat Enterprise Linux (RHEL)

derivative. As a general rule, CentOS and RHEL are often found in

LEARN LINUX IN 5 DAYS

203

corporate environments. Ubuntu is popular with startups and smaller

companies that run their operations in the cloud. If you are using Linux

for your own personal reasons, choose a distribution that appeals to

you. To get some ideas look at DistroWatch.com's top 10 distributions

page.

Here are some other common Linux distributions:

 Arch Linux - https://www.archlinux.org/

 Debian - http://www.debian.org/

 Fedora - http://fedoraproject.org/

 LinuxMint - http://www.linuxmint.com/

 Mageia - http://www.mageia.org/

 openSUSE - http://www.opensuse.org/

There are several special purpose Linux distributions that focus on a

single area. Examples areas of focus include education, minimalism,

multimedia, networking/firewalls, and security. Here is just a sampling

of the available specialty distros.

 ArtistX - A DVD which turns a computer into a full multimedia

production studio.

http://artistx.org/

 Edubuntu - An education oriented operating system.

http://www.edubuntu.com/

 live.linuX-gamers.net - A live Linux distribution focused on

gaming.

http://live.linux-gamers.net/

 Mythbuntu - Mythbuntu is focused upon setting up a

JASON CANNON

204

standalone MythTV based PVR (personal video recorder)

system.

http://www.mythbuntu.org/

 Parted Magic - A Hard disk management solution.

https://partedmagic.com/

 Scientific Linux - Scientific Linux is put together by Fermilab,

CERN, and various other labs and universities around the world.

Its primary purpose is to reduce duplicated effort of the labs,

and to have a common install base for the various

experimenters.

https://www.scientificlinux.org/

 Ubuntu Studio - Provides the full range of multimedia content

creation applications for audio, graphics, video, photography

and publishing.

http://ubuntustudio.org/

 VortexBox - VortexBox is a multifunctional solution to rip, store

and stream CDs, digital music and Internet radio.

http://www.vortexbox.co.uk/

Q: Can I use Microsoft Office in Linux?

Microsoft Office is not available for Linux, however there are

alternatives such as Libreoffice, Open Office, and AbiWord.

Q: How do I run XYZ program in Linux?

To find Linux alternatives for software you use on Mac and Windows,

visit http://alternativeto.net/.

LEARN LINUX IN 5 DAYS

205

APPENDIX C: TRADEMARKS

BSD/OS is a trademark of Berkeley Software Design, Inc. in the United

States and other countries.

Facebook is a registered trademark of Facebook, Inc..

Firefox is a registered trademark of the Mozilla Foundation.

HP and HEWLETT-PACKARD are registered trademarks that belong to

Hewlett-Packard Development Company, L.P.

IBM® is a registered trademark of International Business Machines

Corp., registered in many jurisdictions worldwide.

Linux® is the registered trademark of Linus Torvalds in the U.S. and

other countries.

Mac and OS X are trademarks of Apple Inc., registered in the U.S. and

other countries.

JASON CANNON

206

Open Source is a registered certification mark of Open Source Initiative.

Sun and Oracle Solaris are trademarks or registered trademarks of

Oracle Corporatoin and/or its affiliates in the United States and other

countries.

UNIX is a registered trademark of The Open Group.

Windows is a registered trademark of Microsoft Corporation in the

United States and other countries.

All other product names mentioned herein are the trademarks of their

respective owners.

